• Title/Summary/Keyword: thermodynamic loading

Search Result 24, Processing Time 0.026 seconds

Nonlinear modeling of a RC beam-column connection subjected to cyclic loading

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.299-310
    • /
    • 2018
  • When reinforced concrete structures are subjected to strong seismic forces, their beam-column connections are very susceptible to be damaged during the earthquake event. Consequently, structural designers try to fit an important quantity of steel reinforcement inside the connection, complicating its construction without a clear justification for this. The aim of this work is to evaluate -and demonstrate- numerically how the quantity and the array of the internal steel reinforcement influences on the nonlinear response of the RC beam-column connection. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. The nonlinear response of the RC beam-column connection is evaluated taking into account the nonlinear thermodynamic behavior of each component: a damage model is used for concrete; a classical plasticity model is adopted for steel reinforcement; the steel-concrete bonding is considered perfect without degradation. At the end, the experimental responses obtained in the tests are compared to the numerical results, as well as the distribution of shear stresses and damage inside the concrete core of the beam-column connection, which are analyzed for a low and high state of confinement.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

Modelling of strains in reinforced concrete flexural members using alpha-stable distribution

  • Rao, K. Balaji;Anoop, M.B.;Kesavan, K.;Balasubramanian, S.R.;Ravisankar, K.;Iyer, Nagesh R.
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.411-440
    • /
    • 2013
  • Large fluctuations in surface strain at the level of steel are expected in reinforced concrete flexural members at a given stage of loading due to the emergent structure (emergence of new crack patterns). This has been identified in developing deterministic constitutive models for finite element applications in Ibrahimbegovic et al. (2010). The aim of this paper is to identify a suitable probability distribution for describing the large deviations at far from equilibrium points due to emergent structures, based on phenomenological, thermodynamic and statistical considerations. Motivated by the investigations reported by Prigogine (1978) and Rubi (2008), distributions with heavy tails (namely, alpha-stable distributions) are proposed for modeling the variations in strain in reinforced concrete flexural members to account for the large fluctuations. The applicability of alpha-stable distributions at or in the neighborhood of far from equilibrium points is examined based on the results obtained from carefully planned experimental investigations, on seven reinforced concrete flexural members. It is found that alpha-stable distribution performs better than normal distribution for modeling the observed surface strains in reinforced concrete flexural members at these points.

The impact of corrosion on marine vapour recovery systems by VOC generated from ships

  • Choi, Yoo Youl;Lee, Seok Hee;Park, Jae-Cheul;Choi, Doo Jin;Yoon, Young Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • Marine emissions of Volatile Organic Compounds (VOCs) have received much attention because the International Maritime Organization (IMO) requires the installation of vapour emission control systems for the loading of crude oils or petroleum products onto ships. It was recently recognised that significant corrosion occurs inside these vapour emission control systems, which can cause severe clogging issues. In this study, we analysed the chemical composition of drain water sampled from currently operating systems to investigate the primary causes of corrosion in vapour recovery systems. Immersion and electrochemical tests were conducted under simulated conditions with various real drain water samples, and the impact of corrosion on the marine vapour recovery system was carefully investigated. Moreover, corrosion tests on alternative materials were conducted to begin identifying appropriate substitutes. Thermodynamic calculations showed the effects of environmental factors on the production of condensed sulphuric acid from VOC gas. A model of sulphuric acid formation and accumulation by the characteristics of VOC from crude oil and flue gas is suggested.

Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon (활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.206-213
    • /
    • 2017
  • The adsorption of crystal violet dyes from aqueous solution using the granular activated carbon was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The adsorption characteristic of crystal violet followed Langmuir isotherm. Based on the estimated Langmuir separation factor ($R_L=0.02{\sim}0.106$), this process could be employed as an effective treatment (0 < $R_L$ < 1). The adsorption kinetics followed the pseudo second order model. The values of Gibbs free energy (-1.61~-11.66 kJ/mol) and positive enthalpy (147.209 kJ/mol) indicated that the adsorption process is a spontaneous and endothermic reaction. The isosteric heat of adsorption decreased with increasing of surface loading by the limited adsorbent-adsorbate interaction due to increased surface coverage.

Equilibrium, Isotherm, Kinetic and Thermodynamic Studies for Adsorption of 7-Epi-10-deacetylpaclitaxel from Taxus chinensis on Sylopute (실로퓨트에 의한 Taxus chinensis 유래 7-에피-10-디아세틸파클리탁셀의 흡착에 대한 평형, 등온흡착식, 동역학 및 열역학적 특성)

  • Park, Sae-Hoon;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.113-121
    • /
    • 2020
  • In batch experiments, the adsorption of 7-epi-10-deacetylpaclitaxel was studied using Sylopute. Experimental equilibrium data were applied to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Among the four isotherm models tested, the Langmuir isotherm model gave the highest accuracy. The adsorption capacity was found to decrease with increases in temperature and the adsorption of 7-epi-10-deacetylpaclitaxel onto Sylopute was a favorable physical process. Adsorption kinetic data agreed very well with the pseudo-second-order kinetic model, while boundary layer diffusion and intraparticle diffusion did not play a key role in the adsorption process. The process of 7-epi-10-deacetylpaclitaxel adsorption onto Sylopute was exothermic and nonspontaneous. Also, the adsorption isosteric heat was independent of surface loading indicating an energetically homogeneous adsorbent.

A comparative study on defluoridation capabilities of biosorbents: Isotherm, kinetics, thermodynamics, cost estimation and regeneration study

  • Yihunu, Endashaw Workie;Yu, Haiyan;Junhe, Wen;Kai, Zhang;Teffera, Zebene Lakew;Weldegebrial, Brhane;Limin, Ma
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.384-392
    • /
    • 2020
  • The presence of high fluoride concentration (> 1.5 mg/L) in water causes serious health problems such as fluorosis, infertility, brain damage, etc., which are endemic to many places in the world. This study has investigated the fluoride removal capacity of the novel activated biochar (BTS) and hydrochar (HTS) using Teff (Eragrostis tef) straw as a precursor. Activated biochar with mesoporous structures and large specific surface area of 627.7 ㎡/g were prepared via pyrolysis process. Low-cost carbonaceous hydrochar were also synthesized by an acid assisted hydrothermal carbonization process. Results obtained from both adsorbents show that the best local maximum fluoride removal was achieved at pH 2, contact time 120 min and agitation speed 200 rpm. The thermodynamic studies proved that the adsorption process was spontaneous and exothermic in nature. Both adsorbents equilibrium data fitted to Langmuir isotherm. However, Freundlich isotherm fitted best for BTS. The maximum fluoride loading capacity of BTS and HTS was found to be 212 and 88.7 mg/g, respectively. The variation could primarily be attributed to a relatively larger Surface area for BTS. Hence, to treat fluoride contaminated water, BTS can be promising as an effective adsorbent.

Contimuum Damage Model of Concrete using Hypothesis of Equivalent Elastic Energy (등가탄성에너지법에 의한 콘크리트의 연속체 손상모델)

  • 이기성;변근주;송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.172-178
    • /
    • 1995
  • Concrete contains numerous microcracks at initially poured. The growth and propagation of nicrockacsk are believed tc finally incur the faiure of concrete. These processings are understood as a damage. Damage IS represented as a second-order tensor and crack is treated as a con tinuum phenomenon. In this paper, damage is characterized through the effective stress concept together with the hypothesis of elastic energy equivalence, and damage evolution law and constitutive equation of a damage model are derived by using the Helmholtz frte eriergy and the dissipation potential by means of the thermodynamic principles. The constitutive equation of the model includes the effects of elasticity, anisotropic damage and plasticity of concrete. There are two effective tangent stiffness tensors in this model : one is for elastic-darnage and the other for plastic damage. For the verification of the model, finite element analysis was performed for the analysis of concrete subjec:t to uniaxial and biaxial loading and the results obtained were compared with test results.

Evaluation of Adsorption Characteristics of 2-Picoline onto Sylopute (실로퓨트에 대한 2-피콜린의 흡착 특성 평가)

  • Yang, Ji-Won;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.210-218
    • /
    • 2019
  • Batch experiment studies were carried out on the adsorption of the major tar compound, 2-picoline, derived from the plant cell cultures of Taxus chinensis, using Sylopute while varying parameters such as initial 2-picoline concentration, contact time and adsorption temperature. The experimental data were fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Comparison of results revealed that the Langmuir isotherm model could account for the adsorption isotherm data with the highest accuracy among the four isotherm models considered. From the analysis of adsorption isotherms, it was found that adsorption capacity decreased with increasing temperature and the adsorption of 2-picoline onto Sylopute was favorable. The kinetic data were well described by the pseudo-second-order kinetic model, while intraparticle diffusion and boundary layer diffusion did not play a dominated role in 2-picoline adsorption according to the intraparticle diffusion model. Thermodynamic parameters revealed the exothermic, irreversible and non-spontaneous nature of adsorption. The isosteric heat of adsorption decreased as surface loading ($q_e$) increased, indicating a heterogeneous surface.

Adsorption of Cephalomannine onto Sylopute: Isotherm, Kinetic and Thermodynamic Characteristics (실로퓨트의 세팔로마닌 흡착: 등온흡착식 및 속도론적·열역학적 특성)

  • Kim, Hyunsik;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.219-224
    • /
    • 2019
  • In this study, the adsorption characteristics of cephalomannine on commercial adsorbent Sylopute were investigated using different parameters such as adsorption temperature, time, and initial cephalomannine concentration for the efficient separation of Taxus chinensis-derived cephalomannine by adsorption process. The Temkin isotherm model showed good fit to the equilibrium adsorption data. The adsorption capacity decreased with increasing temperature and the adsorption of cephalomannine onto Sylopute was physical in nature. Adsorption kinetic data fitted well with pseudo-second-order kinetic mode. According to the intraparticle diffusion model, film diffusion and intraparticle diffusion did not play a key role in the entire adsorption process. The process of cephalomannine adsorption onto Sylopute was exothermic and spontaneous. In addition, the isosteric heat of adsorption was constant even with variation in surface loading indicating homogeneous surface coverage.