Article

활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열

이종집

공주대학교 화학공학부 (2016년 12월 30일 접수, 2017년 2월 6일 심사, 2017년 2월 7일 채택)

Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon

Jong Jib Lee

Division of chemical Engineering, Kongju National University, Cheonan, Chungnam 31080, Korea (Received December 30, 2016; Revised February 6, 2017; Accepted February 7, 2017)

초 록

활성탄을 사용하여 수용액으로부터 crystal violet 염료의 흡착에 대해 조사하였으며, 흡착제의 양, 초기농도와 접촉시 간 및 온도를 흡착변수로 사용하여 수행하였다. 흡착평형관계는 Langmuir 등온식에 잘 맞았다. 평가된 Langmuir 분리 계수(R_L = 0.02~0.106)를 바탕으로 이 흡착공정이 효과적인 처리(0 < R_L < 1)가 가능하다는 것을 알았다. 흡착동력학 데이터는 유사 2차 반응속도식에 잘 맞는 것으로 나타났다. Gibbs 자유에너지(-1.61~-11.66 kJ/mol)와 엔탈피(147.209 kJ/mol)는 흡착공정이 자발적이고 흡열반응으로 진행된다는 것을 나타냈다. 등량흡착열은 표면덮임이 증가됨에 따라 흡착제-흡착질의 상호작용이 제한되어 표면부하량이 증가할수록 작아졌다.

Abstract

The adsorption of crystal violet dyes from aqueous solution using the granular activated carbon was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The adsorption characteristic of crystal violet followed Langmuir isotherm. Based on the estimated Langmuir separation factor ($R_L = 0.02 \sim 0.106$), this process could be employed as an effective treatment ($0 < R_L < 1$). The adsorption kinetics followed the pseudo second order model. The values of Gibbs free energy (-1.61~-11.66 kJ/mol) and positive enthalpy (147.209 kJ/mol) indicated that the adsorption process is a spontaneous and endothermic reaction. The isosteric heat of adsorption decreased with increasing of surface loading by the limited adsorbent-adsorbate interaction due to increased surface coverage.

Keywords: crystal violet, dye adsorption, adsorption, adsorption kinetic, isosteric heat

1. 서 론

Crystal violet은 트리페닐메탄계에 속하는 보라색의 염기성 염료로, 명주, 양모, 종이 등의 염색에 이용된다. 견뢰한 염료는 아니지만 빛깔 이 선명하고 값이 싸므로 색연필, 잉크 등의 착색에 사용된다. 또는 pH 1.5 부근에서 산형의 녹색으로부터 염기형의 푸른색으로 변하므로 산염기의 지시약으로 사용된다[1]. Crystal violet과 같은 양이온 염료 는 음이온 염료보다 독성이 더 강할 뿐만 아니라 발암성 물질이며, 피 부에 접촉하게 되면 소화기 계통과 호흡기 그리고 신장에 문제를 야 기 시키는 것으로 알려져 있다[2]. Crystal violet은 방향족 고리를 가 지고 있어서 생물학적 분해가 어렵고, 물리적 처리와 화학적 처리과 정은 제거 효율이 떨어지는 것으로 알려져 있다[3]. 이러한 염료의 제

Author: Kongju National University,

Division of chemical Engineering, Cheonan, Chungnam 31080, Korea Tel: +82-41-521-9357 e-mail: jjlee@kongju.ac.kr

거에 가장 효과적인 방법은 흡착이며, 흡착이란 일반적으로 용액에 있는 용질을 적당한 경계면 위에 모이도록 하는 공정으로, 과거에는 폐수처리 분야에서 흡착 공정이 그다지 많이 이용되지 않았으나, 처 리된 폐수 유출수의 수질 개선을 위해 많은 연구가 진행되어 실제로 사용되고 있다[4]. 흡착은 다른 공정에 비해 조작이 간단하며, 방향족 고리 구조를 가지는 염료의 수중 색도를 완전히 제거할 수 있고, 슬러 지 발생량이 적으면서 공정에 들어가는 비용이 저렴하기 때문에 용존 성 염료폐수의 처리에 적합한 것으로 알려져 있다.

현재까지 crystal violet에 대한 흡착연구는 많은 연구자들에 의해 수행되어 왔는데 이들 연구는 주로 저가의 농업 폐기물을 활성화시켜 만든 활성탄을 흡착제로 사용하였다. Mohanty 등[5]은 왕겨를 황산 (RHS)과 염화아연(RHZ)으로 활성화시킨 활성탄을 흡착제로 사용하 여 흡착제의 양, 크기, 초기농도, pH, 접촉시간 및 온도를 변화시키며 crystal violet을 흡착시켜, 동역학데이터가 Lagergren식, 유사이차 반 응속도식 및 입자 내 확산모델식에 잘 맞는 것을 알아내었다. Basar[6] 는 염화아연을 이용하여 폐살구를 활성화시켜 만든 활성탄을 흡착제로 사용하였다. 온도 증가와 함께 crystal violet 흡착량이 증가하여 흡착과

pISSN: 1225-0112 eISSN: 2288-4505 @ 2017 The Korean Society of Industrial and Engineering Chemistry. All rights reserved.

Table 1. Physical Properties of Granular Activated Carbon

Properties	Unit	Value
Average particle size	mm	1.638
Specific surface area	m²/g	1,735
Macropores volume	$\mathrm{cm}^{2}/\mathrm{g}$	0.02
Micropores volume	$\mathrm{cm}^{2}/\mathrm{g}$	0.40
Average pore size	nm	1.63
Iodine adsorption value	mg/g	1,000
Methylene blue adsorption value	mL/g	180
ash	%	< 10
Hardness	%	> 90

Table	2.	Molecular	Structure	and	Characteristics	of	Crystal	Viole
-------	----	-----------	-----------	-----	-----------------	----	---------	-------

Structural formula	molecular formula	M. W. (g/mol)	water solubility (g/L)	$\lambda_{\rm max}$ (nm)
	C ₂₅ H ₃₀ ClN ₃	479.03	1 (at 25 °C)	420

정이 흡열임을 밝혔고, 흡착평형해석을 위해 Langmuir, Freundlich, Dubinin-Redushkevich, Temkin, Frumkin, Harkins-Jura, Halsey-Henderson 흡착등온식을 사용하여 비교해본 결과 가장 일반적인 Langmiur 흡착등온식과 Freundlich 흡착등온식에 잘 맞는다는 사실과 함께 Frumkin상수(k)에 의해 계산된 △G로부터 고온조작이 더 낫다 고 보고하였다. Saeed 등[7]은 자몽껍질(GFP)을 이용한 crystal violet 흡착 실험을 하였다. 흡착평형은 60 min에 96% 도달하였고, 최대흡착 용량은 254.16 mg/g이었으며, 흡착공정은 유사이차 반응속도식이 더 적합함을 확인하였다. Ferreira 등[8]은 사탕수수(SMA)를 meldrum산 을 이용하여 용제 없이 반응시켜 흡착제로 이용하여 crvstal violet을 제거하였다. 흡착평형에 도달하는데 걸린 시간은 12 h이었고 유사이 차 반응속도식에 잘 맞았으며, Arrhenius와 Eyring 모델식으로 흡착공 정의 활성화에너지를 계산하여 물리흡착공정임을 알아내었다. Pavan 등[9]은 formosa 파파야 종자분말(FPSP)을 흡착제로 사용하여 crystal violet을 제거하는 실험을 통해 최대흡착용량은 85.99 mg/g이고 흡착평 형은 Langmuir 흡착등온식이 가장 잘 맞는다고 보고하였다. Krishnan 등[10]은 sida rhombifolia로 만든 활성탄(SRAC)을 이용하여 crystal violet 흡착제거공정은 Temkin, Dubinin-Redushkevich 흡착등온식에 적합함을 알 수 있었다. 동역학분석을 통해 유사이차속도반응식에 적 합하며, 흡착공정이 자발적 흡열과정임을 확인하였다.

그러나 이와 같은 연구에도 불구하고 아직까지 범용 흡착제로서 우 수한 성능을 가지고 있는 야자계 입상 활성탄을 사용한 crystal violet 의 흡착에 대한 연구는 거의 이루어지지 않고 있다. 본 연구에서는 야 자계 입상 활성탄을 흡착제로 사용하여 crystal violet을 흡착하는데 필 요한 기초자료를 얻고자 하였다. 먼저 활성탄의 양과 pH가 흡착에 미 치는 영향을 조사하고, 등온흡착실험을 통해 흡착등온식을 사용하여 평가한 흡착평형상수와 분리계수로부터 흡착조작에 대한 유효성을 판단하였고, 흡착속도 실험을 통하여 초기농도와 접촉시간 등이 흡착 반응에 미치는 영향을 유사일차 및 유사이차 반응속도식을 사용하여 동력학적으로 고찰하였으며, 흡착온도별 실험을 통하여 열역학적 파 라미터(Gibbs 자유에너지 변화, 엔탈피 변화, 엔트로피 변화)들을 평 가하여 흡착공정에 대한 해석과 함께 등량흡착열을 구하여 공정설계 변수로 활용하고자 하였다.

2.실 험

2.1. 실험재료

흡착제로 사용된 활성탄은 (주)동양탄소에서 제조한 8 × 30 mesh 크기의 야자계 입상 활성탄(GAC)이며 353 K에서 증류수로 24 h 침지 하여 건조 후 사용하였다(이하 입상활성탄은 건조기준 질량으로 표 시). Table 1에 시료인 야자계 입상 활성탄의 대표적인 물성을 나타내 었다. crystal violet은 삼전화학의 EP급 시약을 사용하여 100 mg/L의 원액을 만들어 두고 원하는 농도로 희석하여 사용하였다. 화학구조와 물성은 Table 2와 같다[11].

2.2. 흡착실험

야자계 입상 활성탄의 양에 따른 흡착율을 알아보기 위하여 각 10 ~150 mg의 야자계 입상 활성탄을 10 mg 간격으로 373 K에서 24 h 침지시켜 사용하였다. 초기농도 30 mg/L인 용액 50 mL에 침지시킨 야자계 입상 활성탄을 넣어 왕복식 항온 진탕기(Jeio Tech, BS-21)에 서 298 K, 100 rpm으로 24 h 동안 흡착시킨 후 여과 분리한 여액의 농도를 UV-Vis 흡수분광기(Shimadzu, UV-1800)로 최대흡수파장 420 nm에서 흡광도를 측정하였다. pH 변화실험은 초기농도 30 mg/L인 crystal violet 용액 50 mL에 침지활성탄 100 mg을 넣고 완충용액(pH 3~5 : CH₃COOH-CH₃COONa, pH 6~8 : KH₂PO₄-K₂HPO₄, pH 9~11 : NH₄CI-NH₄OH)을 사용하여 용액의 pH를 조정한 다음에 왕복식 항

Figure 1. Effect of granular activated carbon dose on adsorption of crystal violet (C_0 : 30 mg/L, 298 K).

온진탕기(Jeiotec, BS-21)에서 100 rpm의 속도로 24 h 동안 흡착시켰 다. 등온흡착실험은 298, 308, 318 K에서 초기농도 30 mg/L인 crystal violet 용액 50 mL에 입상 활성탄을 건조기준으로 20~140 mg 범위에 서 각각 유리병에 투입하여 24 h 동안 항온진탕하여 흡착시켰다. 농도 별 흡착속도실험은 298 K에서 crystal violet의 초기농도를 10, 30, 50 mg/L로 조정한 상태에서 입상 활성탄 100mg을 가하여 100 rpm으로 24 h 흡착을 실시하고 1 h 간격으로 농도를 측정하였다. 등온흡착속 도실험은 298, 308, 318 K에서 초기농도 30 mg/L의 용액 50 mL에 입 상 활성탄 100 mg을 첨가하여 같은 방법으로 흡착시킨 후 매시간별 로 흡광도를 측정하여 흡착속도를 분석하였다.

3. 결과 및 고찰

3.1. 입상 활성탄 첨기량의 영향

298 K에서 초기농도 30 mg/L의 crystal violet 용액 50 mL에 대하여 입상 활성탄을 10~150 mg 범위에서 서로 다르게 첨가하고 24 h 항온 진탕한 결과를 Figure 1에 나타내었다. 입상 활성탄의 투입량이 10 mg 에서 150 mg으로 증가함에 따라 crystal violet의 흡착율이 10.7%에서 95.6%로 계속 증가하였다. 이러한 현상은 야자계 입상 활성탄의 양이 증가할수록 비표면적이 증가하는 효과를 발생하여 흡착 부위가 많아 지기 때문으로 알려져 있다[12].

3.2. pH의 영향

pH 3~11 범위에서 pH 변화가 crystal violet의 흡착률에 미치는 영 향을 조사하여 Figure 2에 나타내었다. pH 5에서 69.3%로 흡착률이 가장 낮고, pH 7에서 75.5%, pH 11에서 100%에 가까운 흡착률을 보 였다. pH가 높은 염기성 영역에서 crystal violet의 흡착률이 증가하는 경향을 나타낸 것은 양이온계 염료인 crystal violet이 염기영역에서 음 으로 하전된 야자계 입상 활성탄의 표면과 전기적인 상호작용을 하기 때문이며, 낮은 pH에서는 양으로 하전된 야자계 입상 활성탄 표면과 전기적 반발력에 의해 crystal violet의 흡착량이 감소하기 때문이다 [13]. 그리고 중성부근 영역의 흡착경향에 대해서는 흡착제의 표면하 전만으로는 설명이 어려우며. 그외에도 물질의 이온화도, 흡착제 표면 에 존재하는 표면활성기의 해리뿐만 아니라 염료분자의 구조와 분자 량 등에도 영향을 받았을 것으로 판단된다[14].

Figure 2. Effect of pH for adsorption of crystal violet (C_0 : 30 mg/L, GAC : 100 mg, 298 K).

3.3. 등온흡착평형 해석

3.3.1. 평형흡착량

흡착평형에 도달되었을 때, 흡착제 단위 질량당 흡착된 평형흡착량, qe (mg/g)는 다음 식으로 계산할 수 있다.

$$q_e = \frac{V}{W} (C_o - C_e) \tag{1}$$

여기서 Co와 Ce는 각각 초기농도와 평형농도(mg/L), W는 흡착제 의 건조질량(g), V는 용액의 부피(L)를 나타낸다.

3.3.2. Langmuir 등온흡착식

Langmuir 등온흡착식은 균일한 흡착제 표면 상에서 흡착된 분자들 사이에 상호작용이 없다는 가정 하에 같은 흡착에너지를 가지는 흡착 부위에 단분자층을 만들면서 흡착된다고 보았으며, (1)과 같은 직선식 으로 나타낼 수 있다.

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}K_{L}} + \frac{1}{Q_{o}}C_{e}$$
(2)

여기서 q.는 흡착제 단위질량당 흡착된 흡착질의 양(mg/g), C.는 흡 착질의 평형농도(mg/L), Q.와 KL은 이론최대흡착용량과 흡착속도와 관련된 Langmuir 상수이다. 등온흡착평형실험은 298, 308, 318 K에서 각각 실행하였다. Figure 3은 등온흡착실험결과를 Langmuir식에 적용 하여 나타낸 결과이다. 상수값들을 정리한 Table 3을 보면, 온도가 중 가할수록 이론최대흡착용량(Q.)은 13.52 < 17.02 < 18.72 mg/g으로 증가하였기 때문에 흡착공정이 흡열반응으로 진행되었다는 것을 알 수 있다. 식에 대한 일치도를 나타내는 r² 값은 0.9888~0.9997로 Freundlich식의 r² 값인 0.9531~0.9601보다 1에 더 가깝다. 두 식 모두 일치도가 0.95 이상으로 잘 맞지만 Langmuir식의 일치도가 더 높은 것으로 나타났다. 따라서 활성탄에 의한 crystal violet의 흡착 메카니 즘은 불균일한 다분자층 흡착보다 단분자층 흡착일 가능성이 더 높은 것으로 판단되었다[15]. 또한 흡착평형이 Langmuir식에 맞을 때는 다 음과 같은 무차원 분리계수 또는 평형상수라고 부르는 RL 값을 사용 하여 흡착처리공정의 적합성을 판단해볼 수 있다.

Table 3. Langmuir and Freundlich Isotherm Constants for Adsorption of Rhodamine-B on Granular Activated Carbon

Lasthormes	Daromatara	Temperature (K)			
Isomethis	Parameters	298	308	318	
	Q _o (mg/g)	13.521	17.017	18.723	
Langmuir	K _L (L/mg)	0.248	0.977	1.633	
	R_L	0.106	0.032	0.020	
	r ²	0.9888	0.9948	0.9997	
	$K_F (mg/g)(L/mg)^{1/n}$	5.796	10.613	12.253	
Freundlich	1/n	0.218	0.162	0.145	
	r^2	0.9531	0.9601	0.9550	

Figure 3. Langmuir isotherms for crystal violet on granular activated carbon at different temperatures.

$$R_L = \frac{1}{1 + K_L C_o} \tag{3}$$

효율적인 흡착처리가 가능한 영역은 R_L 값이 $0 < R_L < 1$ 범위에 포함될 때인데 평가된 R_L 은 0.020~0.106로 야자계 입상 활성탄에 의 한 crystal violet의 흡착처리공정이 적합하다는 것을 알 수 있었다[16].

3.3.3. Freundlich 등온흡착식

Freundlich 등온식은 흡착제 표면에서의 에너지 분포가 불균일하며, 흡착은 표면덮임률에 따라 변하며, 비이상적인 흡착에 의해 다분자층 을 형성하는 것을 고려하여 식 (4)와 같이 나타낸다.

$$\log q_e = \log K_F + \frac{1}{n} \log C_e \tag{4}$$

여기서 C₆는 흡착질의 평형농도(mg/L), q₆는 흡착제의 평형흡착량 (mg/g)이고, Freundlich 상수인 K_F는 흡착제의 흡착용량, n은 불균일 도(heterogeneity)를 나타낸다. Freundlich식에 적용한 결과는 Figure 4 와 같다. Table 3에서 흡착제의 흡착용량(K_F)은 온도가 298 K에서 318 K로 증가할수록 5.796 < 10.613 < 12.253 mg/g 순으로 커져서 온 도가 올라갈수록 흡착용량이 증가하는 것을 알 수 있다. Freundlich식 상수인 불균일도(n)로 흡착공정을 판별할 수 있는데, n < 1이면 화학 흡착공정이고 n > 1이면 물리흡착공정이다. 본 연구에서는 298~318 K 범위에서 n 값이 4.587~6.897로 나타나서 물리흡착공정으로 판단되

Figure 4. Freundlich isotherms for crystal violet on granular activated carbon at different temperatures.

었다[17]. 또한 불균일도의 역수로 나타내는 분리계수(1/n)로는 흡착 조작의 적절성을 판단할 수 있다. 1/n = 0~1이면 적합한 흡착조작범 위에 속하고, 1/n = 0.1~0.5이면 우수한 흡착조작범위에 속한다[18]. 본 실험에서 평가된 분리계수(1/n) 값은 0.145~0.218으로 입상 활성탄 에 의한 crystal violet의 흡착처리가 아주 효과적인 방법이 될 수 있다 는 가능성을 확인하였다.

3.4. 동력학적 해석

입상 활성탄에 대한 crystal violet의 흡착 결과를 유사일차 반응속 도식(pseudo first order kinetics model)과 유사이차 반응속도식(pseudo second order kinetics model)에 적용하여 흡착과정을 속도론적으로 조 사하였다. 유사일차 및 이차 반응속도식은 식 (5), (6)과 같다.

$$\ln\left(q_e - q_t\right) = \ln q_e - k_1 t \tag{5}$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(6)

여기서 q_e와 q_t는 각각 평형상태와 t 시간에서 흡착된 crystal violet 의 양(mg/g)이며, k₁은 유사일차 반응속도상수(1/h), k₂는 유사이차 반 응속도상수(g/mg h)이다. t 시간에서 흡착된 흡착량 q_t는 다음 식에 의 해 구할 수 있다.

Initial concentration	Q _{e.exp}	Pseudo first order kinetic model			Pseudo second order kinetic model		
(mg/L)	(mg/g)	$q_{e,cal} \ (mg/g)$	k1 (h)	r ²	$q_{e,cal} \ (mg/g)$	$k_2 \ (g/mg \ {\boldsymbol \cdot} \ h)$	r ²
10	5.240	18.056	0.442	0.7155	6.080	0.057	0.9996
30	12.572	20.334	0.193	0.8712	16.199	0.008	0.9960
50	17.671	14.494	0.158	0.9104	19.312	0.017	0.9884

Table 4. Pseudo First Order and Pseudo Second Order Kinetic Model Parameters of Adsorption of crystal violet on Granular Activated Carbon for Various Initial Concentrations at 298 K

Figure 5. Pseudo first order kinetics plots for crystal violet on granular activated carbon at different initial concentrations (GAC : 100 mg, 298 K).

$$q_t = \frac{\left(C_o - C_t\right)V}{W} \tag{7}$$

crystal violet의 초기농도를 10, 30, 50 mg/L로 변화시켰을 때 1 h 간격으로 흡착량 변화를 조사한 결과로부터 얻은 실험값들을 유사일 차 및 유사이차 반응속도식에 적용한 결과는 각각 Figures 5, 6과 같 다. 이들 그래프로부터 속도식의 파라미터 값들을 계산한 결과는 Table 4에 나타냈다. 속도식에 대한 일치도를 나타내는 r² 값을 보면 유사 1차 반응속도식의 경우 0.7155~0.9104로 평균 0.8324이고, 유사 이차 반응속도식은 0.9884~0.9996로 평균 0.9659로 분석되어 유사이 차 반응속도식에 훨씬 더 잘 맞는 것을 알 수 있었다. 그러나 식에 대 한 적합성을 확인하려면 속도식에 의해 계산한 평형흡착량(qe,cal) 값과 실험값(qeexp)을 비교해 보는 것이 더 정확성을 기할 수 있다. 따라서 다음 식을 사용하여 오차백분율(error percent)을 구하여 비교하였다.

$$Error \ percent = \left| \frac{q_{e, \, cal} - q_{e, \, exp}}{q_{e, \, exp}} \times 100 \right|$$
(8)

계산값(q_{e,cal})는 실험값(q_{e,exp})와 같은 경향으로 농도가 증가함에 따 라 증가함을 보였다. 유사일차 반응속도식에 의해 계산한 평형흡착량 은 오차율이 각각 244.58, 61.74, 17.98%로 평균오차율 108.1%이었고, 유사이차 반응속도식의 결과는 오차율이 16.03, 28.85, 9.29%로 평균 오차율 18.06%를 나타냈다. 두 결과를 종합하면 이 흡착공정은 유사 이차 반응속도식에 더 잘 맞는 것으로 판단되었다.

3.5. 열역학적 해석

반응온도를 298, 308, 318 K로 변화시켜가며 crystal violet 염료가

Figure 6. Pseudo second order kinetics plots for crystal violet on granular activated carbon at different initial concentrations (GAC: 100 mg, 298 K).

흡착평형에 도달할 때까지 1 h 간격으로 흡광도를 측정하였다. 온도 가 증가하면 용액에 에너지를 공급해 줌으로써 용액의 점도가 감소하 여 흡착제 입자 내부 기공의 흡착질 분자의 확산속도를 높이는 것으 로 알려져 있다. 또한 흡착공정에 있어서 에너지와 엔트로피를 둘 다 고려해 주어야만 흡착공정이 자발적으로 일어나는지를 판단할 수 있 다. 열역학적 파라미터 값들은 실제적인 공정운전에 중요한 지표가 될 수 있다[18]. 실험 결과들은 앞에서 사용한 유사일차 반응속도식과 유사이차 반응속도식을 이용하여 분석하였다. 흡착속도실험 데이터를 두 식에 적용하여 본 결과는 Figures 7, 8과 같다. 그리고 이들 그래프 로부터 속도식의 파라미터 값들을 계산한 결과를 Table 5에 나타내었 다. 먼저 유사일차 반응속도식과 유사이차 반응속도식에 대한 적합성 을 판단하기 위해 일치도를 비교해 보면 유사일차 반응속도식(0.8712, 0.9724, 0.9895)보다 유사이차 반응속도식(0.9960, 0.9961, 0.9989)의 값이 더 1에 가까웠고, 오차율도 유사일차 반응속도식 10.19~61.74%, 유사이차 반응속도식 20.16~28.85%로 유사이차 반응속도식의 적합 성이 더 높은 것을 확인하였다.

열역학적 파라미터 값은 공정설계와 공정운전에 관련된 중요한 핵 심인자이다. 흡착공정의 자발성, 흡열성과 타당성을 평가하기 위해 주 로 자유에너지변화(△G), 엔탈피변화(△H) 및 엔트로피 변화(△S)와 같은 열역학적 파라미터의 변화를 밝히는 것은 필수적이다. 흡착공정 의 열역학적 파라미터들은 다음 식들로부터 구할 수 있으며 그 결과 를 Table 6에 나타냈다.

$$\Delta G = -RT \ln K_d$$

210

_									
T ((U) (()		- (Pseudo first order kinetic model			Pseudo second order kinetic model			
_	Temperature (K)	emperature (K) $q_{e,exp}$ (mg/g)	$q_{e,cal}$ (mg/g)	<i>k</i> ₁ (1/h)	r^2	$q_{e,cal} \ (mg\!/g)$	$k_2 \text{ (g/mg \cdot h)}$	r^2	
	298	12.572	20.334	0.193	0.8712	16.199	0.008	0.9960	
	308	14.059	15.492	0.164	0.9724	17.301	0.009	0.9961	
	318	14.968	17.177	0.219	0.9895	17.986	0.014	0.9989	

Table 5. Pseudo First Order and Pseudo Second Order Kinetic Model Parameters of Adsorption of crystal violet on Granular Activated Carbon for Various Temperature at 30 mg/L

Figure 7. Pseudo first order kinetics plots for crystal violet on granular activated carbon at different temperatures (GAC : 100 mg, C_0 : 30 mg/L).

Figure 8. Pseudo second order kinetics plots for crystal violet on granular activated carbon at different temperatures (GAC : 100 mg, C_0 : 30 mg/L).

$$K_d = \frac{q_e}{C_e} \tag{10}$$

$$\ln K_d = \frac{\Delta S}{R} - \frac{\Delta H}{R} \frac{1}{T} \tag{11}$$

여기서 K_d는 식 (10)으로 표현되는 분배계수이다. Table 6을 보면 (11)식의 ln Kd vs 1/T 관계를 도시한 다음 그 기울기로부터 구한 흡 착반응의 표준엔탈피변화가 147.209 kJ/mol로 양의 값을 갖는 것으로

 Table 6. Thermodynamic Parameters for Adsorption of crystal violet

 on Granular Activated Carbon at Different Temperatures

Temperature (K)	K _d	∆H (kJ/mol)	△G (kJ/mol)	△S (J/mol K)
298	1.915		-1.610	
308	4.319	147.209	-3.746	496.410
318	82.326		-11.660	

볼 때 야자계 입상 활성탄에 대한 crystal violet의 흡착반응은 흡열반 응임을 알 수 있다[19]. 이것은 등온흡착평형실험에서 온도가 증가할 수록 흡착용량 또는 흡착률이 커지는 결과를 설명해줄 수 있다. 또한 실험조건에서 표준엔탈피 변화가 일정하다고 가정한 상태에서 298, 308, 318 K에서의 표준자유에너지변화는 온도가 증가할수록 -1.610 > -3.746 > -11.660 kJ/mol 순으로 작아지는 것으로 나타났다. 활성화 에 너지는 음의 값을 가지면 자발적임을 의미한다. 따라서 야자계 입상 활성탄에 의한 crystal violet의 흡착공정은 온도가 증가할수록 자발성 이 더 높아진다는 것을 알 수 있었다. 또한 자유에너지 변화값에 의해 흡착공정을 구분할 때 -20~0 kJ/mol이면 물리흡착 영역이고, -80~ -400 kJ/mol이면 화학흡착영역으로 알려져 있다[20]. 따라서 본 흡착 공정은 물리흡착 영역에 해당한다는 것을 확인할 수 있었다. 엔트로 피 변화 값이 496.410 J/mol·K로 양의 값을 갖는 것은 야자계 입상 활성탄에 crystal violet의 흡착이 진행됨에 따라 활성탄과의 친화력이 강한 crystal violet의 주변에 고정되어 있던 물 분자들은 용액 중으로 방출되기 때문에 자유도가 커진 것에 따른 결과로 판단된다[21].

3.6. 등량흡착열 해석

등량흡착열(isosteric heat of adsorption), △Hx는 흡착제에 일정량 의 흡착질이 흡착되었을 때 결정되는 흡착열로 흡착공정의 특성화와 최적화를 위한 기본적인 요구사항의 하나이다. 따라서 등량흡착열을 아는 것은 열의 영향을 설명하고 흡착과 분리의 특성을 평가할 수 있 기 때문에 공정 및 장치의 설계를 위하여 아주 중요한 정보를 확보하 는 일이 될 수 있다. 일정한 표면 덮임 조건에서 등량흡착열은 Clausius-Clapeyron 식을 사용하여 계산할 수 있다[23].

$$\frac{d(\ln C_e)}{dT} = -\frac{\Delta H_x}{RT^2}$$
(12)

흡착된 일정량의 염료에서 평형농도는 서로 다른 온도에서의 등온 자료로부터 얻을 수 있다. 각 온도구간에서 공통으로 가지는 흡착량 (5~20 mg/g)에 대해 1/T과 ln Ce의 관계를 적용하여 얻은 기울기(△ Hx/R))로부터 구한 등량흡착열은 Table 7에서 보듯이 1.675~3.235 kJ/mol의 값을 나타내었는데, 등량흡착열은 물리흡착일 경우 △Hx <

 Table 7. Isosteric Heat of Adsorption for Adsorption of crystal violet

 on Granular Activated Carbon

No.	qe (mg/g)	${\ensuremath{\varDelta}} H_x$ (kJ/mol)	r^2
1	5	3.235	0.977
2	10	2.201	0.970
3	15	1.677	0.972
4	20	1.675	0.999

80 kJ/mol, 화학흡착일 경우는 △Hx = 80~400 kJ/mol로 분류되므로 입상 활성탄에 의한 crystal violet의 흡착반응은 물리흡착인 것을 재확 인할 수 있었다[22]. 등량흡착열을 평형흡착량(qe)에 대해 plot하여 나 타낸 것이 Figure 9이다. 흡착공정에서 평형흡착량의 증가에 따라 직 선의 기울기가 변하는 경우에는 흡착제 표면의 에너지가 불균일하여 흡착제와 흡착질 사이에 상호작용이 있다는 것을 나타낸다. 그림을 보면 낮은 흡착량에서는 등량흡착열이 높지만 흡착량이 증가할수록 등량흡착열이 작아지는 현상이 나타났다. 따라서 흡착이 진행됨에 따 라 흡착제의 표면에너지가 불균일하고 흡착제의 흡착점에 표면 덮임 이 증가되면 흡착질과 흡착제 사이의 상호작용이 제한된다는 것을 알 수 있었다[23].

4. 결 론

본 연구에서는 입상 활성탄을 사용하여 crystal violet 염료를 흡착 하는데 필요한 흡착평형과 흡착동역학, 열역학 파라미터 및 등량흡착 열에 대하여 조사하였다. crystal violet 염료는 pH가 높은 염기성에서 흡착이 더 잘 일어났는데, 양이온계 염료인 crystal violet이 pH가 높은 염기영역에서 음으로 하전된 야자계 입상 활성탄의 표면과의 전기적 인 상호작용 때문이었다. 등온흡착평형관계를 검토한 결과 흡착평형 데이터는 일치도(r^2) 값이 1에 더 가까운 Langmuir식이 Freundlich식 보다 더 적합함을 확인할 수 있었다. 흡착처리의 유효성을 판단할 수 있는 분리계수를 살펴본 결과 Langmuir식의 분리계수(R_L) 값은 0.02~ 0.106으로 0 < R_L < 1.0에 포함되어 야자계 입상 활성탄에 의해 crystal violet을 아주 효과적으로 흡착처리 할 수 있다는 것을 알았다.

농도별과 온도별 흡착실험을 통한 동력학적 해석 결과는 모두 유사 이차 반응속도식이 유사일차 반응속도식보다 일치도가 높고 평형흡착 량에 대한 오차율도 낮은 것으로 나타났다. 엔탈피 변화값(147.209 kJ/mol)으로부터 흡열반응의 특성을 가지며, 엔트로피 변화값이 496.410 J/mol·K로 양의 값을 갖는 것은 흡착이 진행됨에 따라 흡착시스템의 자유도가 증가한다는 것을 알았다. Gibbs 자유에너지값은 온도가 증 가함에 따라 -1.610 > -3.746 > -11.660 kJ/mol 순으로 감소했기 때문 에 온도가 올라갈수록 흡착공정의 자발성이 더 높아지며, 물리흡착영 역(-20~0 kJ/mol)에 속한다는 것을 확인하였다. 등량흡착열(1.675~ 3.235)은 표면부하량이 증가할수록 작아졌기 때문에 흡착이 진행됨에 따라 흡착제의 표면에너지가 불균일하고 흡착제의 흡착점에 표면 덮 임이 증가되면 흡착질과 흡착제 사이의 상호작용이 제한된다는 것을 알았다.

감 사

이 논문은 2016년 공주대학교 학술연구지원사업의 연구지원에 의 하여 연구되었음.

Figure 9. Plots of isosteric heat of adsorption against surface loading for adsorption of crystal violet.

References

- W. S. Perkins, Renovation of dyebath water by chlorination and ozonation, Part 3, *Text. Chem. Color.*, 12, 262-272 (1980).
- O. J. Hao, H. Kim, and P. C. Chiang, Decolorization of wastewater, *Crit. Rev. Environ. Sci. Technol.*, 30, 449-505 (2000).
- P. K. Malik and S. K. Saha, Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, *Sep. Purif. Technol.*, 31, 241-250 (2003).
- C. M. Carliell, S. J. Barclay, and C. A. Buckley, Treatment of exhausted reactive dye bath effluent using anaerobic digestion: Laboratory and full scale trials, *Wat. Res.*, 22, 225-233 (1996).
- K. Mohanty, J. T. Naidu, B. C. Meikap, and M. N. Biswas, Removal of crystal violet from wastewater by activated carbons prepared from rice husk, *Ind. Eng. Chem. Res.*, 45, 5165-5171 (2006).
- C. A. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, *J. Hazard. Mater.*, B135, 232-241 (2006).
- A. Saeed, M. Sharif, and M. Iqba, Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption, *J. Hazard. Mater.*, **179**, 564-572 (2010).
- B. C. S. Ferreira, F. S. Teodoro, A. B. Mageste, L. F. Gil, R. P. d. Freitas, and L. V. A. Gurgel, Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies, *Ind. Crops Prod.*, 65, 521-534 (2015).
- F. A. Pavan, E. S. Camacho, E. C. Lima, G. L. Dotto, V. T. A. Branco, and S. L. P. Dias, Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase, *J. Environ. Chem. Eng.*, 2, 230-238 (2014).
- N. P. Krishnan, M. Ilayaraja, R. Karthik, and R. S. Kannan, Spectroscopic analysis of crystal violet dye removal by sida rhombifolia: Kinetic, equilibrium, thermodynamic studies, *World J. Pharm. Pharm. Sci.*, **3**, 713-732 (2014).
- Wikipedia, en.wikipedia.org, "crystal violet", http://en.wikipedia. org/wiki/Crystal_violet.
- 12. J. J. Lee, Equilibrium, kinetics and thermodynamics studies about

adsorption of safranin by granular activated carbon, *Appl. Chem. Eng.*, 26, 581-586 (2015).

- K. Porkodi and K. Vasanth Kumar, Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems, *J. Hazard. Mater.*, 143, 311-27 (2007).
- J. J. Lee, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of rhodamine B onto granular activated carbon, *Appl. Chem. Eng.*, 27, 199-204 (2016).
- J. J. Lee, Equilibrium, kinetic and thermodynamic parameter studies on adsorption of acid black 1 using coconut shell-based granular activated carbon, *Appl. Chem. Eng.*, 27, 590-598 (2016).
- S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, *J. Ind. Eng. Chem.*, **22**, 19-27 (2015).
- A. M. M. Vargas, A. L. Cazetta, A. C. Martins, J. C. G. Moraes, E. E. Garcia, G. F. Gauze, W. F. Costa, and V. C. Almeida, Kinetic and equilibrium studies: Adsorption of food dyes Acid

Yellow 6, Acid Yellow 23, and Acid Red 18 on activated carbon from flamboyant pods, *Chem. Eng. J.*, **181-182**, 243-250 (2012).

- V. Srihari and A. Das, The kinetic and thermodynamic studies of phenol-sorption on to three agro-based carbons, *Desalination*, 225, 220-234 (2008).
- W. S. W. Ngah and M. A. K. M. Hanafiah, Adsorption of copper on rubber (hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies, *Biochem. Eng. J.*, **39**, 521-530 (2008).
- M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, *Chem. Eng. J.*, **124**, 89-101 (2006).
- M. T. Sulak, E. Demirbas, and M. Kobya, Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran, *Bioresour. Technol.*, 98, 2590-2598 (2007).
- S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, *Desalination*, 265, 159-168 (2011).
- M. Dorğan and M. Alkan, Removal of methyl violet from aqueous solution by perlite., J. Colloid Interface Sci., 267, 32-41 (2003).