• Title/Summary/Keyword: thermodynamic effect

Search Result 377, Processing Time 0.028 seconds

The Effect of Pressures on the Formation of Charge Transfer Complexes of Toluene with Iodine (I) (톨루엔과 요오드 사이의 전하이동착물에 대한 압력의 영향 (I))

  • Kwun Oh Cheun
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.73-84
    • /
    • 1975
  • The effect of pressures and temperatures on the stabilities of the toluene-iodine charge transfer complex have been investigated through ultraviolet spectrophotometric measurements in n-hexane. The stabilities of complexes were measured at $25~60{\circ}C$ under 1~1,200 bars. The equilibrium constant of the complex was increased with pressure and decreased with temperature raising. The absorption coefficient was increased with both pressure and temperature. Changes of volume, enthalpy, free energy and entropy for the formation of complexes were obtained from the equilibrium constants. The red-shift observed a higher pressure, the blue-shift at a higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions.

  • PDF

An Investigation on the Patination of Copper in Acidic Copper Sulfate Solution (산성황산동 용액 내에서 동판위에 녹청 형성에 관한 기초적 조사)

  • 윤승열
    • Journal of Surface Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.77-85
    • /
    • 1972
  • A method of preparation of synthetic ignorgaic coating on copper (patina) has been presented . An Eh--pH diagram was constructed for the present Cu-H2O-SO$_4$ system using the most recently available thermodynamic data. In the path of the patination at room temperature the general behaviour of copper in acidic copper sulfate solutions with potassium chlorate as an oxidizing agent appeared to follow those predictable in this Eh-pH diagram. In the presence 0.05 molar cupric sulfate at a temperature of about 28$^{\circ}C$ a green brochantite (CuSO$_4$$.$3Cu(OH)$_2$) layer was formed on copper sheet in 20 days. In a solution having an initial pH of 3.5 the development of a brochantite coating has been observed to take place in two stages. In the first, a layer of cuprous oxide formed on the copper at a relatively rapid rate. In the ensuing step the outer layer of cuptrite was oxidized at much slower rate to form brochantite. The syntetic coatings appeared to consist of crystal-lites of brochanitite growing perpendicular to the cuprose oxide surface. The outer tips of the -crystallites were reasily broken off and gave to the layer a rather chalky character. Underneath, at the brochantite Cu$_2$O interface, however, the green layers were firmely attached. The effect of reagent concentration , solution agitation , and moderate temperature increase were investigated to improve the quality of coating. So also in a qualitative way were the effect of light.

  • PDF

Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향)

  • Lee, Seung-Wan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

The Study on the Physicochemical Properties of Fluid under High Pressure (Ⅱ). The Effect of Pressure and Temperature on the Hexamethyl Benzene-Iodine Charge Transfer Complex in n-Hexane

  • Kwun Oh Cheun;Kim Jeong Rim
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.186-191
    • /
    • 1985
  • The effect of pressure and temperature on the stabilities of the charge transfer complexes of hexamethyl benzene with iodine in n-hexane has been investigated by UV-spectrophotometric measurements. In this experiment the absorption spectra of mixed solutions of hexamethyl benzene and iodine in n-hexane were measured at 25, 40 and $60^{\circ}C$ under 1,200, 600, 1200 and 1600 bar. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red shift at higher pressure, the blue shift at higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions. In comparison with the results in the previous studies, it can be seen that the pressure dependence of oscillator strength has a extremum behavior in durene as the variation of ${\Delta}H$ or ${\Delta}S$ with the number of methyl groups of polymethyl benzene near atmospheric pressure in the previous study. The shift or deformation of the potential in the ground state and in the excited state of the complexes formed between polymethyl benzene and iodine was considered from the correlation between the differences of the electron transfer energies and the differences of free energies of the complex formation for the pressure variation.

The Synergistic Effect of 2-Chloromethylbenzimidazole and Potassium Iodide on the Corrosion behavior of Mild Steel in Hydrochloric Acid Solution

  • Zhou, Liben;Cheng, Weizhong;Wang, Deng;Li, Zhaolei;Zhou, Haijun;Guo, Weijie
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • The synergistic effect of 2-chloromethylbenzimidazole (2-CBI) and potassium iodide (KI) for mild steel in 1 M hydrochloric acid solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that, with the addition of 100 ppm potassium iodide, the inhibition efficiecy (IE) of 100 ppm 2-CBI in 1 M hydrochloric acid had been improved from 91.14% to 96.15%. And synergistic parameter of 100 ppm 2-CBI with different amounts of potassium iodide is always greater than 1. The adsorption of potassium iodide combining with 100 ppm 2-CBI obeys to the Langmuir adsorption isotherm. Thermodynamic adsorption parameters, including ∆G0ads, ∆Ha and ∆Sa of the adsorption of the combinned inhibitor, as well as the Ea of the mild steel corrosion in 1 M HCl with the combinned inhibitor, were calculated.

Effect of Inorganic Salt Additives on Formation of Phase-Inversion Polyethersulfone Ultrafiltration Membrane (상변환 Polyethersulfone 한외여과막 제조시 무기염 첨가 효과)

  • 김민정;이상덕;염경호
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.75-89
    • /
    • 2002
  • The effect of addition of inorganic salts in polyethersulfone (PES) polymer solution on the membrane formation and ultrafiltartion performance was studied through the thermodynamic and kinetic properties of casting solution. To control the thermodynamic and kinetic properties of casting solution, various inorganic salts $[CaC1_2, LiCl, LiClO_4, ZnC1_2 $and Mg(ClO_4)_2]$ were added in the PES/NMP solution. Variation of membrane morphology and performance of the resulting membranes with change of the salt type and content added in tasting solution were discussed using viscosity, coagulation value, light transmittance measurement, overall membrane porosity, ultrafiltration experiment and cross-sectional SEM image. For all kind of inorganic salts, according as increase of the salt content in casting solution, viscosity is increased, coagulation value becomes lower, top layer thickness below the skin surface is increased, bovine serum albumin(BSA) rejection decreased and pure water flux is increased except $CaC1_2$ and LiCl. In case of $CaC1_2$ and LiCl, it is found that when the salt content is increased, the formation of macrovoids is suppressed and the precipitation rate becomes slow while instantaneous demixing of precipitation type is maintained. However, in case of $LiClO_4$ and $Mg(ClO_4)_2,$ it is found that precipitation rate becomes faster.

Influence of Inorganic Salts on Aqueous Solubilities of Polycyclic Aromatic Hydrocarbons

  • Yim, Soobin
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • Setschenow constants of six alkali and alkaline earth metal-based electrolytes (i.e., NaCl, KCl, CaCl$_2$, K$_2$SO$_4$, Na$_2$SO$_4$, NaClO$_4$) for three polycyclic aromatic hydrocarbons (PAHs) (i.e., naphthalene, pyrene, and perylene) were investigated to evaluate the influence of a variety of inorganic salts on the aqueous solubility of PAHs. Inorganic salts showed a wide range of K$\_$s/ values (L/mol), ranging from 0.1108 (NaClO$_4$) to 0.6680 (Na$_2$SO$_4$) for naphthalene, 0.1071 (NaClO$_4$) to 0.7355 (Na$_2$SO$_4$) for pyrene, and 0.1526 (NaClO$_4$) to 0.8136 (Na$_2$SO$_4$) for perylene. In general, the salting out effect of metal cations decreased in the order of Ca$\^$2+/>Na$\^$+/>K$\^$+/. The effect of SO$_4$$\^$2-/>Cl$\^$-/>ClO4$\^$-/ was observed for anions of inorganic salts. The K$\_$s/ values decreased in the order of perylene>pyrene>naphthalene for K$_2$SO$_4$. However, the order of decreasing salting out effect for NaCl, KCl, CaCl$_2$, and NaClO$_4$ was perylene>naphthalene>pyrene. Hydration free energy of the 1:1 and 2:1 alkali and alkaline earth metal-based inorganic salts solution was observed to have a meaningful correlation with Setschenow constants. Thermodynamic interactions between PAH molecules and salt solution can be of importance in determining the magnitude of salting out effect for PAHs at a given salt solution.

The Thermodynamics of the Formation of Polymethylbenzene-Halogens Charge Transfer Complexes (Ⅰ) (폴리메틸벤젠과 할로겐사이의 전하이동착물생성에 관한 열역학적 연구 (제1보))

  • Oh Cheun Kwun;Jin Burm Kyong
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 1981
  • Ultraviolet spectrophotometric investigations were carried out on the systems of o-, m-and p-xylene with iodine in carbon tetrachloride. The results reveal the formation of one to one molecular complexes of the type, $C_6H_4(CH_3)_2{\cdot}I_2. $The equilibrium constants of complexes were obtained in consideration of that absorption maxima has the blue shift with the increasing temperatures according to the formation of the charge transfer complexes. The thermodynamic parameters, $ {\Delta}$H, $ {\Delta}$G and $ {\Delta}$S for the formation of the charge transfer complexes were calculated from these values. These results combined with previous study of this series indicated that the relative stabilities of the polymethylbenzene complexes with iodine increase in the order, Benzene < Toluene < o-Xylene < p-Xylene These results are supposed to be the influence resulted from increase of electron density by the positive inductive effect and the steric hindrance effect.

  • PDF

Oxygen Equilibrium and the Solubility of MgO in CaO-FetO-MgO-SiO2(≤5mass%)-ΣMxOy Slags and Molten Iron (CaO-FetO-MgO-SiO2(≤5mass%)-ΣMxOy계 슬래그의 MgO포화용해도와 용철 간 산소평형)

  • Shin, Dong-Yeop;Lee, Joo-Ho;Hong, Seong-Hun;You, Byung-Don;Seo, Seong-Mo;Park, Jong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.765-774
    • /
    • 2010
  • Oxygen equilibrium and the solubility of MgO have been measured in the $CaO-Fe_tO-MgO-SiO_2({\leq}5mass%)-{\Sigma}M_xO_y$ slag in equilibrium with liquid iron in the temperature range of 1550 to $1700^{\circ}C$. The effect of oxides on the MgO solubility, and a method for calculating the solubility of MgO using slag composition and temperature,were discussed. The solubility of MgO is increased with increasing temperature and $Fe_tO$ content, and with decreasing basicity (C/S). The effect of ${\Sigma}M_xO_y$ on the solubility of MgO is a dilution effect due to the increase in slag volume. The activity and activity coefficient of $Fe_tO$ decreased with increasing basicity (B). The effect of temperature on the activity was negligible. The value of ${\rho}=Fe^{3+}/Fe^{2+}$ increased with the increase of the slag basicity (B") and the decrease of the $Fe_tO$ content in the slag.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: II. Effect of Thermodynamic Equations of State on Compression and Transport Process (이산화탄소 해양지중저장 처리를 위한 공정 설계: II. 열역학 상태방정식이 압축 및 수송 공정에 미치는 영향 평가)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.191-198
    • /
    • 2008
  • To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. $CO_2$ capture process from the major point sources such as power plants, transport process from the capture sites to storage sites and storage process to inject $CO_2$ into the deep marine geological structure can be simulate with numerical modeling. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. We also studied the effect of thermodynamic equation of state in designing the compression and transport process. As a results of comparison of numerical calculations, all relevant equation of state excluding ideal equation of state showed similar compression behavior in pure $CO_2$. On the other hand, calculation results of BWRS, PR and PRBM showed totally different behavior in compression and transport process of captured $CO_2$ mixture from the oxy-fuel combustion coal-fired plants. It is recommended to use PR or PRBM in designing of compression and transport process of $CO_2$ mixture containing NO, Ar and $O_2$.

  • PDF