Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.3.189

Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications  

Lee, Seung-Wan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.3, 2019 , pp. 189-195 More about this Journal
Abstract
The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.
Keywords
high manganese steel; austenitic; cryogenic; tensile property; impact property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. Hadfield, Science, 12, 284 (1888).
2 K. M. Rahman, V. A. Voronsov and D. Dye, Acta Mater., 89, 247 (2015).   DOI
3 M. Jo, Y. M. Koo and S. K. Kwon, Met. Mater. Int., 21, 227 (2015).   DOI
4 J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim and Y. W. Chang, Met. Mater. Int., 20, 27 (2014).   DOI
5 I. Gutierrez-Urruita and D. Raabe, Scr. Mater., 66, 992 (2012).   DOI
6 S. Takaki, T. Furuya and Y. Tokunaga, ISIJ. Int., 30, 632 (1990).   DOI
7 H. K. Yand, Z. J. Zhang, F. Y. Dong, Q. Q. Duan and Z. F. Zhang, Mater. Sci. Eng. A, 607, 551 (2014).   DOI
8 I. Gutierrez-Urrutia, S. Zaefferer and D. Raabe, Mater. Sci. Eng. A, 527, 3552 (2010).   DOI
9 S. Y. Jo, J. Han, J. H. Kang, S. Kang, S. Lee and Y. K. Lee, J. Alloys Compd., 627, 375 (2015).
10 R. Ueji, N. Tsuchinda, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura and K. Kunishige, Scr. Mater., 59, 963 (2008).   DOI
11 J. Lee, S. S. Sohn, S. Hong, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim and S. Lee, Metall. Mater. Trans. A, 45, 5419 (2014).   DOI
12 S. S. Sohn, S. Hong, J. Lee, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim and S. Lee, Acta Mater., 100, 39, (2015).   DOI
13 S. J. Lee, Ph. D. Theis (in Korean), p.23-35, Yonsei University, Seoul (2015).
14 G. B. Olson and M. Cohen, Metall. Mater. Trans. A, 7, 1897 (1976).
15 J. D. Yoo and K. T. Park, Mater. Sci. Eng. A, 496, 417 (2008).   DOI
16 Y. N. Dastur and W. C. Lesile, Metall. Mater. Trans. A, 12, 749 (1981).   DOI
17 S. J. Lee, J. K. Kim, S. N. Kane and B. C. De Cooman, Acta Mater., 59, 6809 (2011).   DOI
18 M. Koyama, Y. Sawaguchi, T. Lee, C. S. Lee and K. Tsuzaki, Mater. Sci. Eng., A, 528, 7310 (2011).   DOI
19 O. Bouaziz, S. Allain and C. Scott, Scr. Mater., 58, 484 (2008).   DOI
20 K. T. Park, G. Kim, S. K. Kim, S. W. Lee, S. W. Hwang and C. S. Lee, Met. Mater. Int., 16, 1 (2010).   DOI