DOI QR코드

DOI QR Code

Oxygen Equilibrium and the Solubility of MgO in CaO-FetO-MgO-SiO2(≤5mass%)-ΣMxOy Slags and Molten Iron

CaO-FetO-MgO-SiO2(≤5mass%)-ΣMxOy계 슬래그의 MgO포화용해도와 용철 간 산소평형

  • Shin, Dong-Yeop (Division of Material Science and Engineering, Inha University) ;
  • Lee, Joo-Ho (Division of Material Science and Engineering, Inha University) ;
  • Hong, Seong-Hun (Division of Material Science and Engineering, Inha University) ;
  • You, Byung-Don (Division of Material Science and Engineering, Inha University) ;
  • Seo, Seong-Mo (Technical Research Laboratories, POSCO) ;
  • Park, Jong-Min (Technical Research Laboratories, POSCO)
  • 신동엽 (인하대학교 공과대학 신소재공학부) ;
  • 이주호 (인하대학교 공과대학 신소재공학부) ;
  • 홍성훈 (인하대학교 공과대학 신소재공학부) ;
  • 유병돈 (인하대학교 공과대학 신소재공학부) ;
  • 서성모 (POSCO 기술연구원) ;
  • 박종민 (POSCO 기술연구원)
  • Received : 2010.03.23
  • Published : 2010.08.22

Abstract

Oxygen equilibrium and the solubility of MgO have been measured in the $CaO-Fe_tO-MgO-SiO_2({\leq}5mass%)-{\Sigma}M_xO_y$ slag in equilibrium with liquid iron in the temperature range of 1550 to $1700^{\circ}C$. The effect of oxides on the MgO solubility, and a method for calculating the solubility of MgO using slag composition and temperature,were discussed. The solubility of MgO is increased with increasing temperature and $Fe_tO$ content, and with decreasing basicity (C/S). The effect of ${\Sigma}M_xO_y$ on the solubility of MgO is a dilution effect due to the increase in slag volume. The activity and activity coefficient of $Fe_tO$ decreased with increasing basicity (B). The effect of temperature on the activity was negligible. The value of ${\rho}=Fe^{3+}/Fe^{2+}$ increased with the increase of the slag basicity (B") and the decrease of the $Fe_tO$ content in the slag.

Keywords

References

  1. E. Schrmann, G. Mahn, D. Nolle, and U. Eulenburg, Steel Research 56, 75 (1985). https://doi.org/10.1002/srin.198500601
  2. E. Schrmann, G. Mahn, D. Nolle, and U. Eulenburg, Stahl und Eisen 105, 153 (1985).
  3. Peine-Salzgitter, A. G. Stahl und Eisen 104, 40 (1984).
  4. L. Fiege, Stahl und Eisen 103, 265 (1983).
  5. E. Schrmann and I. Kolm, Steel Research 57, 51 (1986). https://doi.org/10.1002/srin.198600903
  6. E. Schrmann, G. Mahn, D. Nolle, and U. Eulenburg, Stahl und Eisen 105, 89 (1985).
  7. J. M. Park, J. W. Son, and M. H. Dzo, J. Kor. Inst. Met. & Mater. 30, 347 (1992).
  8. J. M. Park, J. W. Son, and M. H. Dzo, J. Kor. Inst. Met. & Mater. 31, 1162 (1993).
  9. J. D. Shim and S. Ban-ya, Tetsu-to-Hagane 63, 1735 (1981).
  10. E. Schrmann and I. Kolm, Steel Research 57, 9 (1986). https://doi.org/10.1002/srin.198600709
  11. H. Suito, R. Inoue, and M. Takada, Trans. ISIJ 21, 250 (1981). https://doi.org/10.2355/isijinternational1966.21.250
  12. H. Suito and R. Inoue, Trans. ISIJ 24, 40 (1984). https://doi.org/10.2355/isijinternational1966.24.40
  13. H. Suito and R. Inoue, Trans. ISIJ 24, 257 (1984). https://doi.org/10.2355/isijinternational1966.24.257
  14. M. Iwase, H. Akizuki, E. Ichise, and Y. Tanaka, Steel Research 57, 436 (1986). https://doi.org/10.1002/srin.198600800
  15. E. T. Turkdogan and J. Pearson, J. Iron Steel Inst. 173, 217 (1953).
  16. Steelmaking data source book, The Japan Society for the promotion of science (The 19th committee o/n steelmaking), Gorden and Breach science publishers, 111 (1988).