• Title/Summary/Keyword: thermocycling

Search Result 229, Processing Time 0.026 seconds

MICROLEAKAGE OF CL V COMPOSITE RESTORATIONS USING VARIOUS LIGHT CURING METHODS (광중합 복합레진 수복시 여러 광조사 방법에 따른 미세변연누출에 관한 연구)

  • Yang, Chol-Young;Yoo, Hyeon-Mee;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.299-308
    • /
    • 2000
  • The purpose of this in vitro study was to evaluate the microleakage of 5 curing methods in class V composite restorations which are composed of two-step light curing, pulse-delay cure, low curing-light intensity, moderate curing-light intensity and high curing-light intensity. In this study, class V cavities were prepared on buccal and lingual surfaces of 50 extracted human upper or lower molars on cementum margin. Single Bond adhesive and Z-100 shade A2 were applied for each group following the manufacture's instruction. The experimental teeth were randomly divided into 5 groups of 10 samples (20 surfaces) each. Group 1: two-step light curing; Group 2: pulse-delay cure; Group 3: low curing-light intensity; Group 4: moderate curing-light intensity; Group 5: high curing-light intensity. After 500 thermocycling between $5^{\circ}C$ and $55^{\circ}C$, the 60 teeth were placed in 2% methylene blue dye for 24 hours, then rinsed with tab water. The specimens were embedded in clear resin, then sectioned buccolingually through the center of restoration with a low speed diamond saw. The dye penetration on each of the specimen was then observed with a stereomicroscope at ${\times}20$. The composite resin/tooth interfaces were examined under Scanning Electron Microscopy. The results were statistically analyzed using the Kruskal-Wallis One Way ANOVA and Dunn's Method. The results of this study were as follows. 1. In all groups, the leakage values seen at the enamel margin were significantly lower than those seen at the dentin margin(P<0.05). 2. No group in this study showed significant differences in leakage values at both the enamel and the dentin margins(P<0.05). 3. In all groups, the gaps seen at the enamel margin were significantly lower than those seen at the dentin margin(P<0.05). 4. The gaps in this study showed significant differences and two-step light-curing and low curing-light intensity produced significant less gap than high curing-light intensity(P<0.05).

  • PDF

A STUDY ON THE TENSILE BOND STRENGTH TO TOOTH STRUCTURE OF TOOTH COLORED MATERIALS ACCORDING TO FILLING METHODS AND LIGHT CURING UNITS (심미수복재의 수복방법과 광조사기기에 따른 치질과의 인장결합강도에 관한 연구)

  • Hwang, Ho-Keel;Kim, Young-Kwan;Oh, Haeng-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.652-663
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile bond strength to tooth structure of composite resin and glass ionomer cement according to filling methods and light curing units. In this study, two class V cavities were prepared on the buccal surface of each tooth of 140 extracted human molars, and they were randomly assigned into 3 experimental groups with 40 teeth and control group with 20 teeth. And then, each experimental groups subdivided into 2 groups(A,B) according to light curing units. The cavities of each group were filled with the CLEARFIL FII self curing resin(Control Group), Z-100 light curing resin(Group 1), Vitremer$^{TM}$ light curing glass ionomer cement(Group 2) and Z-100 light curing resin over the Vitrebond$^{TM}$ liner(Group 3). And subdivided A Group used Argon Laser(SPECTRUM$^{TM}$, U.S.A.), B Group used XL 1,000 curing light (3M, U.S.A.). The specimens underwent temperature changed from $5^{\circ}C$ to $55^{\circ}C$ five hundred times. After thermocycling, specimens were stored in 100% relative humidity at $37^{\circ}C$ for 24 hours. And then, the tensile bond strength of specimens were calculated with Universal Testing Machine(AGS-100A, Japan). The results were as follows : 1. Among the experimental groups, the group 2-B showed the highest tensile bond strength ($18.89{\pm}7.80$) and the group 1-A showed the lowest tensile bond strength ($11.68{\pm}2.28$). There was significant difference between group 2-B and group 1-A(p<0.01). 2. Between the light curing units, the XL 1,000 unit showed higher tensile bond strength ($16.63{\pm}3.20$) than that of the Argon Laser unit ($13.73{\pm}2.30$). There was significant difference between XL 1,000 and Argon Laser(p<0.01). 3. About filling methods and materials, the group 2 showed the highest tensile bond strength ($17.56{\pm}1.89$) and the group 1 showed the lowest tensile bond strength($13.03{\pm}1.90$). There was significant difference between group 2 and group 1,3(p<0.01). In conclusion, the results showed that the glass-ionomer cement that cured by XL 1,000 light curing unit demonstrated significantly higher tensile bond strength than other curing unit and filling methods.

  • PDF

Effect of Nano-filled Protective Coating on Microhardness and Wear Resistance of Glass-ionomer Cements (나노필러가 함유된 표면보호재가 글라스 아이오노머 시멘트의 미세경도와 마모저항성에 미치는 효과)

  • Ryu, Wonjeong;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.226-232
    • /
    • 2019
  • The purpose of this study was to investigate the effect of adding a protective coating on the microhardness and wear resistance of glass ionomer cements (GICs). Specimens were prepared from GIC and resin-modified GIC (RMGI), and divided into 3 groups based on surface protection: (1) no coating (NC), (2) Equia coat coating (EC), and (3) un-filled adhesive coating (AD). All specimens were then placed in distilled water for 24 h. Surface hardness (n = 10) was evaluated on a Vickers hardness testing machine. Wear resistance (n = 10) was evaluated after subjecting the specimen to thermocycling for 10,000 cycles using a chewing simulator. Data were analyzed using a one-way ANOVA and the Kruskal-Wallis test. Surface hardness was highest in the NC groups, followed by the EC and AD groups. The wear depth of GI + NC was significantly higher than that of all RMGI groups. EC did not significantly lower the wear depth compared to AD. Based on these results, it was concluded that although EC does not increase the surface microhardness of GIC, it can increase the wear resistance.

Comparison of the retention of the full veneer casted gold crowns with varying convergence angle, crown length and dental cements (수렴각과 치관 길이를 달리한 금속 다이상에서 치과용 시멘트 합착 후 전부주조관의 유지력 비교)

  • Yun, Jung-Ho;Cho, Jin-Hyung;Kim, Jee-Hwan;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • Purpose: The aim of this research was to establish the effect and variation in differing convergence angle and length of abutment on the retention of full veneer casted gold crown. Materials and methods: Two different length,5 mm and 10 mm in height with convergence angles of 5, 10, 15 and 25 degrees crowns were fabricated. Cementation was done using cements; zinc phosphate cement (Fleck's zinc phosphate cement), resin-modified glass ionomer cement (Vitremer) and resin cement (Panavia 21). These were tested for tensile force at the point of separation by using Instron Universal Testing Machine. Statistical analysis was done by SAS 6.04 package. Results: In all cements the mean retention decreased with significant difference on increase of convergence angle (P<.05). Increase in every 5 degree-convergence angel the retention rate decreased with resin-modified glass ionomer cement of 15.9% and resin cement of 14.8%. With zinc phosphate cement, there was largest decreasing rate of mean retention of 25.5% between convergence angles from 5 degree to 10 degree. When the crown length increased from 5 mm to 10 mm, the retention increased with the significant difference in the same convergence angle and in all types of cement used (P<.05). Conclusion: The retention was strongly dependent on geometric factors of abutment. Much care is required in choosing cements for an optimal retention in abutments with different convergence angles and crown lengths.

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

Fracture resistance of zirconia and resin nano ceramic implant abutments according to thickness after thermocycling (지르코니아와 레진나노세라믹 임플란트 지대주의 두께에 따른 열순환 후 파절저항)

  • Lee, Jung-Won;Cha, Hyun-Suk;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Purpose: The aim of this in vitro study is to investigate load bearing capacity of esthetic abutments according to the type of material and wall thickness. Materials and methods: 70 specimens equally divided into seven groups according to their abutment wall thicknesses. The abutments prepared with titanium 0.5 mm wall thickness were used as a control group (Ti-0.5), whereas zirconia abutments and resin nano ceramic abutments with wall thickness 0.5 mm, 0.8 mm and 1.0 mm were prepared as test groups (Zir-0.5, Zir-0.8, Zir-1.0 and RNC-0.5, RNC-0.8, RNC-1.0). All specimens were tested in a universal testing machine to evaluate their resistance to fracture and all of them underwent thermo-cycling before loading test. Mean fracture values of the groups were measured and statistical analyses were made using two-way ANOVA. Results: Zir-1.0 showed the highest mean strength ($2,476.3{\pm}342.0N$) and Zir-0.8 ($1,518{\pm}347.9N$), Ti-0.5 ($1,041.8{\pm}237.2N$), Zir-0.5 ($631.4{\pm}149.0N$) were followed. The strengths of RNC groups were significantly lower compared to other two materials (RNC-1.0 $427.5{\pm}72.1$, RNC-0.8 $297.9{\pm}41.2$) and the strengths of all the test groups decreased as the thickness decreases (P < .01). RNC-0.5 ($127.4{\pm}35.3N$) abutments were weaker than all other groups (P < .05). Conclusion: All tested zirconia abutments have the potential to withstand the physiologic occlusal forces in anterior and posterior regions. In resin nano ceramic abutments, wall thickness more than 0.8 mm showed the possibility of withstanding the occlusal forces in anterior region.

Effect on Shear Strength of Ceramic Surface Treatment Materials and Three Resin Cements to IPS Empress 2 (표면 처리재와 레진 시멘트가 IPS Empress 2의 전단결합강도에 미치는 영향)

  • Yae, Sun-Hae;Lee, Kyubok;Lee, Cheong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.157-170
    • /
    • 2002
  • The purpose of this study is to analyze the shear bond strength according to kinds of surface treatment agents and resin cements after acid etching of IPS Empress 2. For this purpose, test groups were classified into silane-treated bonding groups, silica-coated group and Targis link applied group. Then, nine bonding groups in total, each three groups per kind, were prepared by using three kinds of resin cements-Panavia F, Variolink II and Rely-X ARC, and thirty test specimens per group were prepared. To examine any changes in the oral environment, the shear bond strength of each test specimen was measured after dipping test for 24 hours and for five weeks, respectively, in distilled water at $37^{\circ}C$ and performing heat cycle 10,000 times in total, each 2,000 times per week, during a five weeks of dipping, under the condition similar to the oral environment. The bond failure modes were also observed by means of a scanning electron microscope. The results are summarized as follows 1. Statically significant differences between the surface conditioning materials were observed. The shear strength of the silane treatment was the highest of all three types of surface treatments(p<0.001). 2. Shear strengths varied significantly for different types of resin luting agents. But bond strength of Targis link surface treatments were not significantly different(p<0.05). 3. No significant difference of bonding strengths was found between storage time conditions(24 hours and 5 weeks). Only group II, IV, VII, IX were significantly different(p<0.05). 4. After thermocycling, the shear bond strengths of all groups were significantly decreased (p<0.05). Group III, V, VI were no significantly different. 5. On the SEM observation of fractured surfaces, all groups were shown complex failure.

THE FISSURE PENETRATION AND MICROLEAKAGE OF PIT AND FISSURE SEALANT WITH MECHANICAL PREPARATION (기계적 삭제방법을 이용한 치면열구전색제의 열구 침투도 및 미세누출)

  • Kim, Ji-Yeon;Lee, Jae-Ho;Park, Ki-Tae;Kim, Seong-Oh;Choi, Byung-Jai;Son, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.164-173
    • /
    • 2005
  • Mechanical preparation has been introduced to provide the sealant retention. The objective of this study was to compare the fissure penetration and the microleakage of pit and fissure sealant using mechanical preparation(mechanical preparation + acid etching) and acid etching only. An additional objective of this study was to compare the fissure penetration and the microleakage of unfilled and filled sealant in both methods. Sixty human premolars extracted for orthodontic purpose were selected. Thirty teeth were acid etched alone and remaining thirty teeth were prepared with a $\frac{1}{4}$ round bur and then acid etched. One-half of teeth in each surface treatment method were sealed with unfilled sealant and the other half were sealed with filled sealant. All of the teeth were thermocycled for 1200 cycles at $5^{\circ}C\;and\;55^{\circ}C$ and immersed in 5% methylene blue for 24 hours. Each tooth was sectioned bucco-lingually at mesial pit and distal pit and examined under a Measurescope. In the case of mechanical preparation, fissure penetration of sealant was significantly increased compared with the case of acid etching only(P < 0.05). The filled and unfilled sealant using mechanical preparation showed significantly decreased microleakage when compared with the unfilled sealant using acid etching only(P < 0.05). No differences were found in fissure penetration and microleakage between unfilled and filled sealant in both methods. Taken together, the results of this study suggest that mechanical preparation and filled sealant are recommended when placing pit and fissure sealant. However, further clinical studies should be performed in regard to microleakage.

  • PDF

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

THE EFFECT OF REBONDING IN MICROLEAKAGE OF CLASS V RESTORATIONS UNDER LOAD CYCLING (부하순환 하에서 제V급 복합레진 수복물의 미세변연누출에 대한 재접착제의 효과에 관한 연구)

  • Youn, Yeon-Hee;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.527-533
    • /
    • 2004
  • One clinical technique recommended for improving marginal integrity is "rebonding" or application of unfilled resins to the surface of composite restoration. But continuously the restorations are affected with occlusal load. There is room for doubt that the rebonding agent has the positive effect on microleakage in spite of the stress generated by the occlusal load. This study determined the effect of rebonding on microleakage of Class V resin composite restorations under load cycling. Class V cavities were prepared on the buccal surface of 40 sound extracted premolars and restored with a hybrid light-cured resin composite according to manufacturers' directions. They were randomly divided into two groups consisting of 20 samples: a control(group I), without surface sealing, and the other group(group II) in which margins were etched and rebonded. After thermocycling, each of groups was divided into subgroups(group A, B), and load cycling(total 100,000 cycles with 4-100N load at a rate of 1 Hz) were applied on the group B. Assessment of microleakage utilized methylene blue dye penetration. The following results were obtained: 1. In the occlusal region, no significant difference was noted in the scores regardless of whether or not the rebonding agent was used(group TA-IIA, IB-IIB)(p>0.05). 2. In the cervical region, the control group with rebonding(group IIA) showed the better result than the group without rebonding(group IA)(p<0.05). 3. In the cervical region, the rebonded group with load cycling(group IIB) showed similar results to the group without rebonding(group IB) and no significant difference was noted(p>0.05).

  • PDF