• Title/Summary/Keyword: thermochemical conversion

Search Result 58, Processing Time 0.019 seconds

A Study on the Characteristics of CO Oxidation by NO Poisoning in Pt/TiO2 Catalyst (Pt/TiO2 촉매에서의 NO 피독에 의한 CO 산화반응특성 연구)

  • Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to investigate the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst prepared by wet impregnation method and calcined at 400 ℃. In order to confirm the NO poisoning effect of the Pt/TiO2 catalyst, the change of reaction activity was observed when NO was injected during the CO+O2 reaction where it was ascertained that the CO conversion rate rapidly decreased below 200 ℃. Also, CO conversion was not observed below 125 ℃. Recovery of initial CO conversion was not verified even if NO injection was blocked at 125 ℃. Accordingly, various analyses were performed according to NO injection. First, as a result of the TPD analysis, it was confirmed that NO pre-adsorption in catalyst inhibited CO adsorption and conversion desorption from adsorbed CO to CO2. When NO was pre-adsorbed, it was confirmed through H2-TPR analysis that the oxygen mobility of the catalyst was reduced. In addition, it was validated through FT-IR analysis that the redox cycle (Pt2+→Pt0→Pt2+) of the catalyst was inhibited. Therefore, the presence of NO in the Pt/TiO2 catalyst was considered to be a poisoning factor in the CO oxidation reaction, and it was determined that the oxygen mobility of the catalyst is required to prevent NO poisoning.

Recent Development of Carbon Dioxide Conversion Technology (이산화탄소 전환 기술의 현황)

  • Choi, Ji-Na;Chang, Tae-Sun;Kim, Beom-Sik
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.229-249
    • /
    • 2012
  • At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution for global warming due to increased carbon emission. However, the environmental and ecological effects of CCS have drawn concerns. There are needs for noble post reduction technology. More recently, CCU (carbon capture and utilization) Technology, which emphasizes transforming carbon dioxide into value-added chemicals rather than storing it, has been attracted attentions in terms of preventing global warming and recycling the renewable carbon source. In this paper, various technologies developed for carbon dioxide conversion both in gas and liquid phase have been reviewed. For the thermochemical catalysis in gas phase, the development of the catalytic system which can be performed at mild condition and the separation and purification technology with low energy supply is required. For the photochemical conversion in liquid phase, efficient photosensitizers and photocatalysts should be developed, and the photoelectrochemical systems which can utilize solar and electric energy simultaneously are also in development for more efficient carbon dioxide conversion. The energy needed in CCU must be renewable or unutilized one. CCU will be a key connection technology between renewable energy and bio industry development.

Effect of temperature on torrefaction of food waste to produce solid fuel (반탄화를 통한 음식물쓰레기의 연료화에서 온도에 대한 영향 비교)

  • Kim, Hyunsook;Yoo, Jaemin;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.235-240
    • /
    • 2014
  • In this study, the torrefaction of food waste was conducted to characterize its product, to find out effect of the operating temperature and to assess the feasibility of being used as fuel. The operating temperature was varid from $180^{\circ}C{\sim}270^{\circ}C$ and heat was provided by using nitrogen gas or waste oil heat carrier. The solid yield and moisture content were reduced were reduced as temperature increased. The moisture content reduction and thermochemical conversion were observed at higher than $240^{\circ}C$. At low operating temperature, heat transfer efficiency was higher with wast oil heat carrier. As temperature increases, there was not difference in heat transfer efficiency of two different heating methods. The lower heating value product was increased from 660 to 6,400 Kcal/kg with nitrogen gas and 6,890 Kcal/kg with waste oil heat carrier. The elemental analysis indicates that, as temperature increases, the carbon content of product increases and oxygen content decreases. From the analysis of O/C and H/C, the torrefaction product was close to low grade coal. The characteristics of fuel converted from the food subsequent thermochemical treatment.

Attrition and Heat Transfer Characteristics of Fluidized Bed Materials for a Solar Hybrid Process (태양열 하이브리드 공정을 위한 유동층 입자들의 마모 및 열전달 특성 연구)

  • Kim, Hyung Woo;Lee, Doyeon;Nam, Hyungseok;Hong, Young Wan;Seo, Su Been;Go, Eun Sol;Kang, Seo Yeong;Lee, See Hoon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Various solar hybrid energy conversion processes, which have both the advantages of renewable energy sources and fossil energy sources, have been developed in the world because stable and predictable energy supplies, such as electricity and natural gas, are necessary for modern societies. In particular, a solar hybrid energy conversion process based on a dual fluidized bed process concept has been expected as the promising solution for sustainable energy supply via thermochemical conversions, such as pyrolysis, combustion, gasification, and so on, because solar thermal energy could be captured and stored in fluidized bed materials. Therefore, the attrition and heat transfer characteristics of silicon carbide and alumina particles used for fluidized bed materials for the solar hybrid energy conversion process were studied in an ASTM D5757 reactor and a bubbling fluidized bed reactor with 0.14m diameter and 2m height. These characteristics of novel fluidized bed materials were compared with those of sand particles which have widely been used as a fluidized bed material in various commercial fluidized bed reactors. The attrition resistances of silicon carbide and alumina particles were higher than those of sand particles while the average values of heat transfer coefficient in the bubbling fluidized bed reactor were in the range of 125 ~ 152 W m-2K-1.

Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst (Ni 기반 촉매를 이용한 HI 분해 반응 특성)

  • KIM, JI HYE;PARK, CHU SIK;KIM, CHANG HEE;KANG, KYOUNG SOO;JEONG, SEONG UK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni = 0.1, 0.5, 1, 3, 5, 10 wt%) were investigated. As the supported Ni amount increased up to 3 wt%, HI decomposition was found to increase in linear proportion. However, the conversion of $Ni/Al_2O_3$ catalyst loaded above 3 wt% was not linear. It was thought that the different HI decomposition characteristics was caused in the size and metal dispersion of Ni particles of catalyst. The physical property of catalyst before and after HI decomposition reaction was characterized by BET, chemisorption, XRD and SEM analysis.

2 Liquid Phase Purification Characteristics for Sulfur-Iodine Thermochemical Hydrogen Production (황-요오드 열화학 수소체조 공정에서 2 액상 정체 특성)

  • Lee, Kwang-Jin;Cha, Kwang-Seo;Kang, Young-Han;Park, Chu-Sik;Bae, Ki-Kwang;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.69-72
    • /
    • 2007
  • The objective of this work was to study the properties of purification of two liquid phase for exclusion of impurities in each phase. The experiments for process variables were carried out in the temperature range($H_{2}SO_{4}$ phase: $413{\sim}513$ K, $HI_{x}$ phase: $353{\sim}453$ K) and in the $N_{2}$ flow rate range($H_{2}SO_{4}$, $HI_{x}$ phase: $50{\sim}200$ mL/min). As the results, it is appeared that the principles of $H_{2}SO_{4}$ phase purification was due to stripping, evaporation and reverse bunsen reaction and $HI_{x}$ phase purification was due to stripping and reverse bunsen reaction. In purification of $H_{2}SO_{4}$ phase, the concentration rate of $H_{2}SO_{4}$ phase was controled by temperature but the temperature had few effects on yield of $H_{2}SO_{4}$. In purification of $HI_{x}$ phase, we observed products of side reactions($H_{2}S$, S) over 433 K. The purity of $HI_{x}$ phase was increased with increasing $N_{2}$ flow rate because impurites were decreased with increasing conversion of reverse reaction.

  • PDF

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.

A Study on the Heat Storage System for Chemical Heat Pump Using Inorganic Hydrates (II) -Numerical Analysis of Heat Transfer in CaO Hydration Packed Bed- (화학열펌프에 있어서의 무기수화물계 축열시스템에 관한 연구(II) -CaO 수화반응층의 전열해석-)

  • Park, Young-Hae;Chung, Soo-Yull;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.518-529
    • /
    • 1996
  • To develope chemical heat pump using available energy sources such as solar heat and many kinds of waste thermal energy we have studied the enhancement effect of inserted fins in cylindical packed bed reactor. Two dimensionnal(radial and circumferential) partial differential eqaetions, concerning heat and masstransfer in CaO packed bad, are solved numerically to describe the characteristics of the reaction of fins inserted reactor and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion in the reactant in the packed bed and exothermic heat amount released from the reactor are follows; -. The insertion of fins in reactor can redue the reaction completion time by half. -. The rate of thermochemical reaction depends of the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

  • PDF

NOx Formation Characteristics of the Coal-derived Synthetic Gas Containing $CH_4$ and $NH_3$ Components (메탄 및 암모니아를 포함하는 석탄 합성가스의 NOx 발생 특성)

  • Lee, Chan
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • Theoretical analysis was conducted on the combustion and the NOx formation characteristics of the coal-derived synthetic gases with medium-BTU heating value. The synthetic gas was assumed to contain the major species of CO, $H_2,\;CO_2$, and $N_2$ and the minor species of $CH_4$ and $NH_3$. Through thermochemical analysis on the combustion of the synthetic gas, the flame temperature, major and minor species of exhaust gas, and thermal and fuel NOx emissions were computed. In addition, the effects of the $CH_4$ and the $NH_3$ components in syngas fuel on combustion and NOx emission were investigated. Based on the computed results on the synthetic gases, basic direction and guidelines were provided fur the low NOx design of gas turbine combustor.

  • PDF