Browse > Article
http://dx.doi.org/10.7464/ksct.2012.18.3.229

Recent Development of Carbon Dioxide Conversion Technology  

Choi, Ji-Na (Greenhouse Gas Resources Research Group, Research Center for Environmental Resources, Korea Research Institute of Chemical Technology)
Chang, Tae-Sun (Greenhouse Gas Resources Research Group, Research Center for Environmental Resources, Korea Research Institute of Chemical Technology)
Kim, Beom-Sik (Greenhouse Gas Resources Research Group, Research Center for Environmental Resources, Korea Research Institute of Chemical Technology)
Publication Information
Clean Technology / v.18, no.3, 2012 , pp. 229-249 More about this Journal
Abstract
At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution for global warming due to increased carbon emission. However, the environmental and ecological effects of CCS have drawn concerns. There are needs for noble post reduction technology. More recently, CCU (carbon capture and utilization) Technology, which emphasizes transforming carbon dioxide into value-added chemicals rather than storing it, has been attracted attentions in terms of preventing global warming and recycling the renewable carbon source. In this paper, various technologies developed for carbon dioxide conversion both in gas and liquid phase have been reviewed. For the thermochemical catalysis in gas phase, the development of the catalytic system which can be performed at mild condition and the separation and purification technology with low energy supply is required. For the photochemical conversion in liquid phase, efficient photosensitizers and photocatalysts should be developed, and the photoelectrochemical systems which can utilize solar and electric energy simultaneously are also in development for more efficient carbon dioxide conversion. The energy needed in CCU must be renewable or unutilized one. CCU will be a key connection technology between renewable energy and bio industry development.
Keywords
Carbon dioxide; Reduction; Thermocatalysis; Photochemical; Photocatalysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Petit, J.-P., Chartier, P., Beley, M., and Deville, J.-P., "Molecular Catalysts in Photoelectrochemical Cells: Study of an Efficient System for the Selective Photoelectroreduction of $CO_{2}$: p-GaP or $p-GaAs/Ni(cyclam)^{2+}$, Aqueous Medium," J. Electroanal. Chem., 269, 267-281 (1989).   DOI   ScienceOn
2 Kumar, B., Smieja, J. M., and Kubiak, C. P., "Photoreduction of $CO_{2}$ on p-type Silicon using $Re(Bipy-But)(CO)_{3}Cl$: Photovoltages Exceeding 600 mV for the Selective Reduction of $CO_{2}$ to CO," J. Phys. Chem. C, 114, 14220-14223 (2010).   DOI   ScienceOn
3 Barton, E. E., Rampulla, D. M., and Bocarsly, A. B., "Selective Solar-driven Reduction of $CO_{2}$ to Methanol using a Catalyzed p-GaP Based Photoelectrochemical Cell," J. Am. Chem. Soc., 130, 6342-6344 (2008).   DOI   ScienceOn
4 Cabrera, C. R., and Abruna, H. D., "Electrocatalysis of $CO_{2}$ Reduction at Surface Modified Metallic and Semiconducting Electrodes," J. Electroanal. Chem., 209, 101-107 (1986).   DOI   ScienceOn
5 Arai, T., Sato, S., Uemura, K., Morikawa, T., Kajino, T., and Motohiro, T., "Photoelectrochemical Reduction of $CO_{2}$ in Water under Visible-light Irradiation by a p-Type InP Photocathode Modified with an Electropolymerized Ruthenium Complex," Chem. Commun., 46, 6944-6946 (2010).   DOI   ScienceOn
6 Taniguchi, I., Aurian-blajeni, B., and Bockris, J. O., "Photoaided Reduction of Carbon Dioxide to Carbon Monoxide," J. Electroanal. Chem., 157(2), 179-182 (1983).
7 Canfield, D., and Frese, J. K. W., "Reduction of Carbon Dioxide to Methanol on n- and p-GaAs and p-InP: Effect of Crystal Face, Electrolyte and Current Density," J. Electrochem. Soc., 130(8), 1772-1773 (1983).   DOI
8 Ikeda, S., Yoshida, M., and Ito, K. "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-GaP Photocathodes in Aqueous Electrolytes" Bull. Chem. Soc. Jpn., 58(5), 1353-1357 (1985).   DOI
9 Ikeda, S., Saito, Y., Yoshida, M., Noda, H., Maeda, M., and Ito, K., "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-Gap Photocathodes in Non-aqueous Electrolytes," J. Electroanal. Chem., 260, 335-345 (1989).   DOI   ScienceOn
10 Hinogami, R., Nakamura, Y., Yae, S., and Nakato, Y., "An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Mo dification with Small Metal Particles," J. Phys. Chem. B, 102, 974-980 (1998).   DOI   ScienceOn
11 Kaneco, S., Katsumata, H., Suzuki, T., and Ohta, K., "Photoelectrocatalytic Reduction of $CO_{2}$ in LiOH/Methanol at Metalmodified p-InP Electrodes," Appl. Catal. B, 64, 139-145 (2006).   DOI   ScienceOn
12 Taniguchi, Y., Yoneyama, H., and Tamura, H., "Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether," Bull. Chem. Soc. Jpn., 55(7), 2034-2039 (1982).   DOI   ScienceOn
13 Bockris, J. O., and Wass, J. C., "On the Photoelectrocatalytic Reduction of Carbon Dioxide," Mater. Chem. Phys., 22(3-4), 249-330 (1989).   DOI   ScienceOn
14 Parkinson, B. A., and Weaver, P. F., "Photoelectrochemical Pumping of Enzymatic $CO_{2}$ Reduction," Nature, 309, 148-149 (1984).   DOI
15 Yanagida, S., Kanemoto, M., Ishihara, K. I., Wada, Y., Sakata, T., and Mori, H., "Visible-Light Induced Photoreduction of $CO_{2}$ with CdS Nanocrystallites- Importance of the Morphology and Surface Structures Controlled through Solvation by N, N-Dimethylformamide," Bull, Chem. Soc. Jpn., 70, 2063-2070 (1997).   DOI   ScienceOn
16 Kohno, Y., Tanaka, T., Funabiki, T., and Yoshida, S., "Photoreduction of $CO_{2}$ with $H_{2}$ over $ZrO_{2}$. A Study on Interaction of Hydrogen with Photoexcited $CO_{2}$," Phys. Chem. Chem. Phys., 2, 2635-2639 (2000).   DOI   ScienceOn
17 Tsuneoka, H., Teramura, K., Shishido, T., and Tanaka, T., "Adsorbed Species of $CO_{2}$ and $H_{2}$ on $Ga_{2}O_{3}$ for the Photocatalytic Reduction of $CO_{2}$," J. Phys. Chem. C, 114, 8892- 8898 (2010).   DOI   ScienceOn
18 Teramura, K., Okuoka, S., Tsuneoka, H., Shishido, T., and Tanaka, T., "Photocatalytic Reduction of $CO_{2}$ using $H_{2}$ as Reductant over $ATaO_{3}$ Photocatalysts (A = Li, Na, K)," Appl. Catal. B, 96, 565-568 (2010).   DOI   ScienceOn
19 Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., and Yoshida, S. "Photoreduction of Carbon Dioxide by Hydrogen over Magnesium Oxide," Phys. Chem. Chem. Phys., 3, 1108-1113 (2001).   DOI   ScienceOn
20 Liu, W., Huang, B., Dai, Y., Zhang, X., Qin, X., Jiang, M., and Whangbo, M.-H., "Selective Ethanol Formation from Photocatalytic Reduction of Carbon Dioxide in Water with $BiVO_{4}$ Photocatalyst," Catal. Commun., 11, 210-213 (2009).   DOI   ScienceOn
21 Pan, P.-W., and Chen, Y.-W., "Photocatalytic Reduction of Carbon Dioxide on NiO/$InTaO_{4}$ under Visible-light Irradiation," Catal. Commun., 8, 1546-1549 (2007).   DOI   ScienceOn
22 Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., Yanagida, S., Okada, T., and Kobayashi, H., "Effect of Surface Structures on Photocatalytic $CO_{2}$ Reduction Using Quantized CdS Nanocrystallites," J. Phys. Chem. B, 101, 8270-8278 (1997).   DOI   ScienceOn
23 Adachi, K., Ohta, K., and Mizuno, M., "Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon using Copperloaded Titanium Dioxide," Solar Energy, 53, 187-190 (1994).   DOI   ScienceOn
24 Matsuoka, S., Yamamoto, K., Ogata, T., Kusaba, M., Nakashima, N., Fujita, E., and Yanagida, S., "Efficient and Selective Electron Mediation of Cobalt Complexes with Cyclam and Related Macrocycles in the p-Terphenyl-Catalyzed Photoreduction of $CO_{2}$," J. Am. Chem. Soc., 115, 601-609 (1993).   DOI
25 Kimura, E., Wada, S., Shionoya, M., and Okazaki, Y., "New Series of Multifunctionalized Nickel(II)-Cyclam (Cyclam = 1,4,8,1l-Tetraaza-cyclotetradecane) Complexes. Application to the Photoreduction of Carbon Dioxide," Inorg. Chem., 33, 770-778 (1994).   DOI   ScienceOn
26 Gholamkhass, B., Mametsuka, H., Koike, K., Tanabe, T., Furue, M., and Ishitani, O., "Architecture of Supramolecular Metal Complexes for Photocatalytic $CO_{2}$ Reduction: Ruthenium- Rhenium Bi- and Tetranuclear Complexes," Inorg. Chem., 44, 2326-2336 (2005).   DOI   ScienceOn
27 Sato, S., Koike, K., Inoue, H., and Ishitani, O., "Highly Efficient Supramoecular Photocatalysts for CO Reduction using Visible Light," Photochem. Photobiol. Sci., 6, 454-461 (2007).   DOI   ScienceOn
28 Ogata, T., Yamamoto, Y., Wada, Y., Murakoshi, K., Kusaba, M., Nakashima, N., Ishida, A., Takamuku, S., and Yanagida, S., "Phenazine-Photosensitized Reduction of $CO_{2}$ Mediated by a Cobalt-Cyclam Complex through Electron and Hydrogen Transfer," J. Phys. Chem., 99, 11916-11922 (1995).   DOI
29 Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979).   DOI
30 Koci, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., Jirkovsky, J., and Solcova, O., "Effect of $TiO_{2}$ Particle Size on the Photocatalytic Reduction of $CO_{2}$," Appl. Catal. B., 89, 494-502 (2009).   DOI   ScienceOn
31 Wu, J. C. S., "Photocatalytic Reduction of Greenhouse Gas $CO_{2}$ to Fuel," Catal. Surv. Asia, 13(1), 30-40 (2009).   DOI
32 Chong, P. J., Janicki, S. Z., and Pertillo, P. A., "Multilevel Selectivity in the Mild and High-Yielding Chlorosilane-Induced Cleavage of Carbamates to Isocyanates," J. Org. Chem., 63, 8515-8521 (1998).   DOI   ScienceOn
33 Hori, H., Johnson, F. P. A., Koike, K., Ishitani, O., and Ibusuki, T., "Efficient Photocatalytic $CO_{2}$ Reduction using $[Re(bpy)(CO)_{3}{P(OEt)_{3}}]^{+}$," J. Photochem. Photobiol. A, 96, 171-174 (1996).   DOI   ScienceOn
34 Alper, H., and Butler, D. C. D., "Synthesis of Isocyanates from Carbamate Esters Employing Boron Trichloride," Chem. Commun., 2575-2576 (1998).
35 Alper, H., and Valli, V. L. K., "A Simple, Convenient, and Efficient Method for the Synthesis of Isocyanates from Urethanes," J. Org. Chem., 60, 257-258 (1995).   DOI   ScienceOn
36 Tsuda, T., Sanada, S. I., and Saegusa, T., "Copper-promoted Deoxygenation of Carbon Dioxide by Isocyanide," J. Organometallic Chem., 116, C10-C12 (1976).   DOI   ScienceOn
37 Kim, W. Y., Chang, J. S., Park, S. E., Ferrence, G., and Kubaik, C. P., "Mechanistic and IR Spectroelectrochemical Studies for Alkali Metal Ion Catalyzed Multiple Bond Metathesis Reactions of Carbon Dioxide," Chem. Lett., 1063-1064 (1998).
38 Kilgore, U. J., Basuli, F., Huffmann, J. C., and Mindiola, D. J., "Aryl Isocyanate, Carbodiimide, and Isocyanide Prepared from Carbon Dioxide. A Metathetical Group-Transfer Tale Involving a Titanium-Imide Zwitterion," Inorg. Chem., 45, 487- 489 (2006).   DOI   ScienceOn
39 Sita, L. R., J. R., and Xi, R., "Facile Metathetical Exchange between Carbon Dioxide and the Divalent Group 14 Bisamides $M[N(SiMe_{3})_{2}]_{2}$ (M = Ge and Sn)," J. Am. Chem. Soc., 118, 10912-10913 (1996).   DOI   ScienceOn
40 Kanemoto, M., Hosokawa, H., Wada, Y., Murakoshi, K., Yanagida, S., Sakata, T., Mori, H., Ishikawa, M., and Kobayashi, H., "Role of Surface in the Photoreduction of Carbon Dioxide Catalysed by Colloidal ZnS Nanocrystallites in Organic Solvent," J. Chem. Soc, Faraday Trans., 92(13), 2401-2411 (1996).   DOI
41 Inoue, H., Moriwaki, H., Maeda, K., and Yoneyama, H., "Photoreduction of Carbon Dioxide using Chalcogenide Semiconductor Microcrystals," J. Photoochem. Photobiol. A, 86, 191- 196 (1995).   DOI   ScienceOn
42 Wang, C., Thompson, R. L., Baltrus, J., and Matranga, C., "Visible-Light Photoreduction of $CO_{2}$ Using CdSe/Pt/$TiO_{2}$ Heterostructured Catalysts," J. Phys. Chem. Lett., 1, 48-53 (2010).   DOI   ScienceOn
43 Ozcan, O., Yukruk, F., Akkaya, E., and Uner, D., "Dye Sensitized $CO_{2}$ Reduction over Pure and Platinized $TiO_{2}$," Top. Catal., 44(4), 523-528 (2007).   DOI
44 Woolerton, T. W., Sheard, S., Reisner, E., Pierce, E., Ragsdale, S. W., and Armstrong, F. A., "Efficient and Clean Photoreduction of $CO_{2}$ to CO by Enzyme-modified $TiO_{2}$ Nanoparticles Using Visible Light," J. Am. Chem. Soc., 132, 2132-2133 (2010).   DOI   ScienceOn
45 Halmann, M., "Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-type Gallium Posphide in Liquid Junction Solar Cells," Nature, 275, 115-116 (1978).   DOI
46 Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979).   DOI
47 Kim, W., Seok, T., and Choi, W., "Nafion Layer-enhanced Photosynthetic Conversion of $CO_{2}$ into Hydrocarbons on $TiO_{2}$ Nanoparticles," Energy Environ. Sci., 5, 6066-6070 (2012)   DOI   ScienceOn
48 Shioya, Y., Ikeue, K., Ogawa, M., and Anpo, M., "Synthesis of Transparent Ti-containing Mesoporous Silica Thin Film Materials and Their Unique Photocatalytic Activity for the Reduction of $CO_{2}$ with $H_{2}O$," Appl. Catal. A, 254, 251-259 (2003).   DOI   ScienceOn
49 Ishitani, O., Inoue, C., Suzuki, Y., and Ibusuki, T., "Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by an Aqueous Suspension of Metal Deposited $TiO_{2}$," J. Photochem. Photobiol. A, 72, 269-271 (1993).   DOI   ScienceOn
50 Slamet, Nasution, H. W., Purnama, E. Kosela, S., and Gunlazuardi, J., "Photocatalytic Reduction of $CO_{2}$ on Copper-doped Titania Catalysts Prepared by Improved-impregnation Method," Catal. Commun., 6, 313-319 (2005).   DOI   ScienceOn
51 Ikeue, K., Nozaki, S., Ogawa, M., and Anpo, M., "Characterization of Self-standing Ti-containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of $CO_{2}$ with $H_{2}O$," Catal. Today, 74, 241-248 (2002).   DOI   ScienceOn
52 Ikeue, K., Yamashita, H., Anpo, M., and Takewaki, T., "Photocatalytic Reduction of $CO_{2}$ with $H_{2}O$ on Ti-$\beta$ Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties," J. Phys. Chem. B, 105, 8350-8355 (2001).   DOI   ScienceOn
53 Xia, X.-H., Jia, Z-J., Yu, W., Liang, Y., Wang, Z., and Ma, L.-L., "Preparation of Multi-walled Carbon Nanotube Supported $TiO_{2}$ and its Photocatalytic Actvitity in the Reduction of $CO_{2}$ with $H_{2}O$," Carbon, 45, 717-721 (2007).   DOI   ScienceOn
54 Nguyen, T-V., Wu, J. C. S., and Chiou, C-H., "Photoreduction of $CO_{2}$ over Ruthenium Dye-sensitized $TiO_{2}$-based Catalysts under Concentrated Natural Sunlight," Catal. Commun., 9, 2073-2076 (2008).   DOI   ScienceOn
55 Ishida, H., Tanaka, K., and Tnanka, T., "Photochemical $CO_{2}$ Reduction by an NADH Model Compound in the Presence of $[Ru(bpy)_{3}]^{2+}$ and $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ (bpy = 2,2'-bipyridine) in $H_{2}O$/DMF," Chem. Lett., 17(2), 339-342 (1988).   DOI
56 Maidan, R., and Willner, I., "Photoreduction of $CO_{2}$ to $CH_{4}$ in Aqueous Solutions Using Visible Light," J. Am. Chem. Soc., 108(25), 8100-8101 (1986).   DOI
57 Ishida, H., Tanaka, K., Tanaka, T., "Electrochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ and $[Ru(bpy)_{2}(CO)Cl]^{+}$. The Effect of pH on the Formation of CO and HCOOH," Organometallics, 5, 181-186 (1986).
58 Ishida, H., Terada, T., Tanaka, K., and Tanaka, T., "Photochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ using Triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an Electron Donor," Inorg. Chem., 29, 905-911 (1990).   DOI
59 Lehn, J.-M., and Ziessel, R., "Photochemical Reduction of Carbon dioxide to Formate Catalyzed by 2,2'-bipyridine- or l,10-phenanthroline-ruthenium(II) Complexes," J. Organomet. Chem., 29, 157-173 (1990).
60 Tinnemans, A. H. A., Koster, T. P. M., Thewissen, D. H. M. W., and Mackor, A., "Tetraaza-macrocyclic Cobalt(II) and Nickel( II) Complexes as Electron-Transfer Agents in the Photo (electro)chemical and Electrochemical Reduction of Carbon Dioxide," Recueil des Travaux Chimiques des Pays-Bas, 103 (10), 1288-295 (1984).
61 Grant, J. L., Goswami, K., Spreer, L. O., Otvos, J. W., and Calvin, M., "Photochemical Reduction of Carbon Dioxide to Carbon Monoxide in Water using a Nickel(II) Tetra-azamacrocycle Complex as Catalyst," J. Chem. Soc. Dalton Trans., 2105- 2109 (1987).
62 Wisniewski, M., Boreave, A., and Gelin, P., "Catalytic $CO_{2}$ Reforming of Methane over $Ir/Ce_{0.9}Gd_{0.1}O_{2-x}$," Catal. Commun., 6, 596-600 (2005).   DOI   ScienceOn
63 Horvath, M. J., Saylik, D., and Elmes, P. S., "A Mitsunobubased Procedure for the Preparation of Alkyl and Hindered Aryl Isocyanates from Primary Amines and Carbon Dioxide under Mild Conditions," Tetrahedron Lett., 40, 363-366 (1999).   DOI   ScienceOn
64 Saylik, D., Horvath, M. J., Elmes, P. S., Jackson, W. R., Lovel, C. G., and Moody, K., "Preparation of Isocyanates from Primary Amines and Carbon Dioxide Using Mitsunobu Chemistry," J. Org. Chem., 64, 3940-3946 (1999).   DOI   ScienceOn
65 Nakagawa, K., Anzai, K., Matsui, N., Ikenaga, N., Suzuki, T., and Teng, Y. H., "Effect of Support on the Conversion of Methane to Synthesis Gas over Supported Iridium Catalysts," Catal. Lett., 51, 163-167 (1998).   DOI
66 Schulz, P. G., Gonzalez, M. G., Quincoces, C. E., and Gigola, C. E., "Methane Reforming with Carbon Dioxide. The Behavior of Pd/alpha-$Al_{2}O_{3}$ and Pd-CeOx/alpha-$Al_{2}O_{3}$ Catalysts," Ind. Eng. Chem. Res., 44, 9020-9029 (2005).   DOI   ScienceOn
67 Carrara, C., Munera, J., Lombardo, E. A., and Cornaglia, L. M., "Kinetic and Stability Studies of Ru/$La_{2}O_{3}$ Used in the Dry Reforming of Methane," Top. Catal., 51, 98-106 (2008).   DOI
68 Bodrov, I. M., and Apel'baum, L. O., "Reaction Kinetics of Methane and Carbon Dioxide on a Nickel Surface," Kinet. Catal., 8, 326-330 (1967).
69 Guo, J. Z., Hou, Z. Y., Gao, J., and Zheng, X. M., "DRIFTS Study on Adsorption and Activation of $CH_{4}$ and $CO_{2}$ on Ni/ $SiO_{2}$ Catalyst with Various Ni Particle Sizes," Chin. J. Catal., 28(1), 22-26 (2007).   DOI   ScienceOn
70 Subrahmanyam, M., Kaneco, S., and Alonso-Vante, N., "A screening for the Photo Reduction of Carbon Dioxide Supported on Metal Oxide Catalysts for C1-C3 Selectivity," Appl. Catal. B., 23(2-3), 169-174 (1999).   DOI   ScienceOn
71 Liu, B-J., Torimoto, T., and Yoneyama, H., "Photocatalytic Reduction of Carbon Dioxide in the Presence of Nitrate using $TiO_{2}$ Nanocrystal Photocatalyst Embedded in $SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 115, 227-230 (1998).   DOI   ScienceOn
72 Kaneco, S., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of High Pressure Carbon Dioxide using $TiO_{2}$ Powders with a Positive Hole Scavenger," J. Photochem. Photobiol. A, 115, 223-226 (1998).   DOI   ScienceOn
73 Dey, G. R., Belapurkar, A. D., and Kishore, K., "Photo-catalytic Reduction of Carbon Dioxide to Methane using $TiO_{2}$ as Suspension in Water," J. Photochem. Photobiol. A, 163, 503-508 (2004).   DOI   ScienceOn
74 Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of $CO_{2}$ using $TiO_{2}$ Powders in Supercritical Fluid $CO_{2}$," Energy, 24, 21-30 (1999).   DOI   ScienceOn
75 Liu, B. J., Torimoto, T., Matsumoto, H., and Yoneyama, H., "Effect of Solvents on Photocatalytic Reduction of Carbon Dioxide using $TiO_{2}$ Nanocrystal Photocatalyst Embedded in $SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 108, 187-192 (1997).   DOI   ScienceOn
76 Tseng, I. H., Chang, W.-C., and Wu, J. C. S., "Photoreduction of $CO_{2}$ using Sol-gel Derived Titania and Titania-supported Copper Catalysts," Appl. Catal. B, 37, 37-48 (2002).   DOI   ScienceOn
77 Tsubaki, H., Sekine, A., Ohashi, Y., Koike, K., Takeda, H., and Ishitani, O., "Control of Photochemical, Photophysical, Electrochemical, and Photocatalytic Properties of Rhenium(I) Complexes Using Intramolecular Weak Interactions between Ligands," J. Am. Chem. Soc., 127, 15544-15555 (2005).   DOI   ScienceOn
78 Hori, H., Johnson, F. P. A., Koike, K., Takeuchi, K., Ibusuki, T., and Ishitani, O., "Photochemistry of $[Re(bipy)(CO)_{3}(PPh_{3})]^{+}$ (bipy = 2,2'-bipyridine) in the presence of Triethanolamine Associated with Photoreductive Fixation of Carbon Dioxide: Participation of a Chain Reaction Mechanism," J. Chem. Soc. Dalton Trans., 1019-1024 (1997).
79 Takeda, H., Koike, K., Inoue, H., and Ishitani, O., "Development of an Efficient Photocatalytic System for $CO_{2}$ Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies," J. Am. Chem. Soc., 130, 2023-2031 (2008).   DOI   ScienceOn
80 Koike, K., Hori, H., Ishizuka, M., Westwell, J. R., Takeuchi, W., Ibusuki, T., Enjouji, K., Konno, H., Skamoto, K., and Ishitani, O., "Key Process of the Photocatalytic Reduction of $CO_{2}$ using $[Re(4,4 (X = $CH_{3}$, H, $CF_{3}$ and $PR_{3}$ = Phosphorus Ligands): Dark Reaction of the One-Electron-Reduced Complexes with $CO_{2}$," Organometallics, 16, 5724-5729 (1997).   DOI   ScienceOn
81 Tsubaki, H., Sugawara, A., Takeda, H., Gholamkhass, B., Koike, K., Nozaki, K., Pac, C., Turner, J. J., and Westwell, J. R., "Photocatalytic Reduction of $CO_{2}$ using cis,trans-$[Re(dmbpy)(CO)_{2}(PR_{3})(PR (dmbpy = 4,4'-dimethyl-2,2'-bipyridine)," Res. Chem. Intermed., 33(1-2), 37-48 (2007).   DOI   ScienceOn
82 Willner, I., Maidan, R., Mandler, D., Durr, H., Dorr, G., and Zengerle, K., "Photosensitized Reduction of $CO_{2}$ to $CH_{4}$ and $H_{2}$ Evolution in the Presence of Ruthenium and Osmium Colloids: Strategies To Design Selectivity of Products Distribution," J. Am. Chem. Soc., 109(26), 6080-6086 (1987).   DOI
83 Mark, M. F., and Maier, W. F., "$CO_{2}$-reforming of Methane on Supported Rh and Ir Catalysts," J. Catal., 164, 122-130 (1996).   DOI   ScienceOn
84 Osaki, T., Masuda, H., and Mori, T., "Intermediate Hydrocarbon Species for the $CO_{2}$-$CH_{4}$ Reaction on Supported Ni Catalysts," Catal. Lett., 29, 33-37 (1994).   DOI
85 Hu, Y. H., and Ruckenstein, E., "Transient Response Analysis via a Broadened Pulse Combined with A Step Change or An Isotopic Pulse. Application to $CO_{2}$ Reforming of Methane over NiO/$SiO_{2}$," J. Phys. Chem. B, 101, 7563-7565 (1997).   DOI   ScienceOn
86 Randall, D., and Lee, S., The Polyurethane books, John Wiley & Sons, New York, 2002, pp. 113-126.
87 Wang, H. Y., and Ruckenstein, E., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Rhodium Catalysts: the Effect of Support," Appl. Catal. A, 204, 143-152 (2000).   DOI   ScienceOn
88 Hou, Z. Y., Chen, P., Fang, H. L., Zheng, X. M., and Yashima, T., "Production of Synthesis Gas via Methane Reforming with $CO_{2}$ on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts," Int. J. Hydrogen Energy, 31, 555-561 (2006).   DOI   ScienceOn
89 Bradford, M. C. J., and Vannice, M. A., "$CO_{2}$ Reforming of $CH_{4}$ over Supported Pt Catalysts," J. Catal., 173, 157-171 (1998).   DOI   ScienceOn
90 Bitter, J. H., Seshan, K., and Lercher, J. A., "Mono and Bifunctional Pathways of $CO_{2}$/$CH_{4}$ Reforming over Pt and Rh Based Catalysts," J. Catal., 176, 93-101 (1998).   DOI   ScienceOn
91 Bitter, J. H., Seshan, K., and Lercher, J. A., "The State of Zirconia Supported Platinum Catalysts for $CO_{2}$/$CH_ {4}$ Reforming," J. Catal., 171, 279-286 (1997).   DOI   ScienceOn
92 Behar, D., Dhanasekaran, T., Neta, P., Hosten, C. M., Ejeh, D., Hambright, P., and Fujita, E., "Cobalt Porphyrin Catalyzed Reduction of $CO_{2}$. Radiation Chemical, Photochemical, and Electrochemical Studies," J. Phys. Chem. A, 102, 2870-2877 (1998).   DOI   ScienceOn
93 Anatastas, P. T., Zimmerman, and Kirchhoff, M. M., "Origins, Current Status, and Future Challenges of Green Chemistry," Acc. Chem. Res., 35, 686-694 (2002).   DOI   ScienceOn
94 Trost, B. M., "On Inventing Reactions for Atom Economy," Acc. Chem. Res., 35, 695-705 (2002).   DOI   ScienceOn
95 Grodkowski, J., Behar, D., Neta, P., and Hambright, P., "Iron Porphyrin-Catalyzed Reduction of $CO_{2}$. Photochemical and Radiation Chemical Studies," J. Phys. Chem. A, 101, 248-254 (1997).   DOI   ScienceOn
96 Grodkowski, J., Dhanasekaran, T., Neta, P., Hambright, P., Brunschwig, B. S., Shinozaki, K., and Fujitam, E., "Reduction of Cobalt and Iron Phthalocyanines and the Role of the Reduced Species in Catalyzed Photoreduction of $CO_{2}$," J. Phys. Chem. A, 104, 11332-11339 (2000).   DOI   ScienceOn
97 Grodkowski, J., and Neta, P., "Cobalt Corrin Catalyzed Photoreduction of $CO_{2}$," J. Phys. Chem. A, 104, 1848-1853 (2000).   DOI   ScienceOn
98 Grodkowski, J., Neta, P., Fujita, E., Mhammed, A., Simkhovich, L., and Gross, Z., "Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of $CO_{2}$," J. Phys. Chem. A, 106, 4772-4778 (2002).   DOI   ScienceOn
99 Hawecker, J., Lehn, J. M., and Ziessel, R., "Efficienct Photochemical Reduction of $CO_{2}$ to CO by Visible-Light Irradiation of Systems Containing $Re(bipy)(CO)_{3}X$ or $Re(bipy)_{3}^{2+}-CO^{2+}$ Combinations as Homogeneous Catalysts," J. Chem. Soc., Chem. Commun., 536-538 (1983).
100 Souza, M. M. V. M., Aranda, D. A. G., and Schmal, M., "Coke Formation on Pt/$ZrO_{2}$/$Al_{2}O_{3}$ Catalysts during $CH_{4}$ Reforming with $CO_{2}$," Ind. Eng. Chem. Res., 41, 4681-4685 (2002).   DOI   ScienceOn
101 Bitter, J. H., Seshan, K., and Lercher, J. A., "Deactivation and Coke Accumulation during $CO_{2}$/$CH_{4}$ Reforming over Pt Catalysts," J. Catal., 183, 336-343 (1999).   DOI   ScienceOn
102 Ballarini, A. D., de Miguel, S. R., Jablonski, E. L., Scelza, O. A., and Castro, A. A., "Reforming of $CH_{4}$ with $CO_{2}$ on Pt-supported Catalysts Effect of the Support on the Catalytic Behaviour," Catal. Today, 107-108, 481-486 (2005).   DOI   ScienceOn
103 Song, C. O., "Global Challenges and Strategies for Control, Conversion and Utilization of $CO_{2}$ for Sustainable Dvelopment Ivolving Energy, Catalysis, Adsorption and Chemical processing," Catal. Today, 115, 2-32 (2006).   DOI   ScienceOn
104 Aresta, M., and Dibenedetto, A., Carbon Dioxide Recovery and Utilization, Kluwer Academic Publisher, Dordrecht, 2003, pp. 211-214.
105 Ruckenstein, E., and Wang, H. Y., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Cobalt Catalysts," Appl. Catal. A, 204, 257-263(2000)   DOI   ScienceOn
106 Edwards, J. H., and Maitra, A. M., "The Chemistry of Methane Reforming with Carbon Dioxide and Its Current and Potential Applications," Fuel Proc. Technol., 42, 269-289 (1995).   DOI   ScienceOn
107 Ruckenstein, E., and Wang, H. Y., "Carbon Deposition and Catalytic Deactivation during $CO_{2}$ Reforming of $CH_{4}$ over Co/gamma-$Al_{2}O_{3}$ Catalysts," J. Catal., 205, 289-293 (2002).   DOI   ScienceOn
108 Mondal, K. C., Choudhary, V. R., and Joshi, U. A., "$CO_{2}$ Reforming of Methane to Syngas over Highly Active and Stable Supported $CoO_{x}$ (Accompanied with MgO, $ZrO_{2}$ or $CeO_{2}$) Catalysts," Appl. Catal. A, 316, 47-52 (2007).   DOI   ScienceOn
109 Hou, Z. Y., and Yashima, T., "Supported Co Catalysts for Methane Reforming with $CO_{2}$," React. Kinet. Catal. Lett., 81(1), 153-159 (2004).   DOI
110 Bouarab, R., Cherifi, O., and Auroux, A., "Reforming of Methane by $CO_{2}$ in Presence of Cobalt-based Catalysts," Green Chem., 5, 209-212 (2003).   DOI   ScienceOn
111 Nagaoka, K., Takanabe, K., and Aika, K., "Influence of the Reduction Temperature on Catalytic Activity of Co/$TiO_{2}$ (Anatase- type) for High Pressure Dry Reforming of Methane," Appl. Catal. A, 255, 13-21 (2003).   DOI   ScienceOn
112 Beley, M., Collin, J.-P., Sauvage, J.-P., Petit, J.-P., and Chartier, P., "Photoassisted Electro-reduction of $CO_{2}$ on p-GaAs in the Presence of Ni $cyclam^{2+}$," J. Electroanal. Chem., 206, 333-339 (1986).   DOI   ScienceOn
113 Bradley, M. G., and Tysak, T., "p-Type Silicon Based Photoelectrochemical Cells for Optical Energy Conversion: Electrochemistry of Tetra-azomacrocyclic Metal Complexes at Illuminated," J. Electroanal. Chem., 135, 153-157 (1982).   DOI   ScienceOn