DOI QR코드

DOI QR Code

Attrition and Heat Transfer Characteristics of Fluidized Bed Materials for a Solar Hybrid Process

태양열 하이브리드 공정을 위한 유동층 입자들의 마모 및 열전달 특성 연구

  • Kim, Hyung Woo (Department of Mineral resources and energy engineering, Jeonbuk National University) ;
  • Lee, Doyeon (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Nam, Hyungseok (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Hong, Young Wan (Department of Mineral resources and energy engineering, Jeonbuk National University) ;
  • Seo, Su Been (Department of Mineral resources and energy engineering, Jeonbuk National University) ;
  • Go, Eun Sol (Department of Mineral resources and energy engineering, Jeonbuk National University) ;
  • Kang, Seo Yeong (Department of Mineral resources and energy engineering, Jeonbuk National University) ;
  • Lee, See Hoon (Department of Mineral resources and energy engineering, Jeonbuk National University)
  • 김형우 (전북대학교 자원에너지공학과) ;
  • 이도연 (한국에너지기술연구원 온실가스연구실) ;
  • 남형석 (한국에너지기술연구원 온실가스연구실) ;
  • 홍영완 (전북대학교 자원에너지공학과) ;
  • 서수빈 (전북대학교 자원에너지공학과) ;
  • 고은솔 (전북대학교 자원에너지공학과) ;
  • 강서영 (전북대학교 자원에너지공학과) ;
  • 이시훈 (전북대학교 자원에너지공학과)
  • Received : 2020.01.09
  • Accepted : 2020.02.10
  • Published : 2020.03.31

Abstract

Various solar hybrid energy conversion processes, which have both the advantages of renewable energy sources and fossil energy sources, have been developed in the world because stable and predictable energy supplies, such as electricity and natural gas, are necessary for modern societies. In particular, a solar hybrid energy conversion process based on a dual fluidized bed process concept has been expected as the promising solution for sustainable energy supply via thermochemical conversions, such as pyrolysis, combustion, gasification, and so on, because solar thermal energy could be captured and stored in fluidized bed materials. Therefore, the attrition and heat transfer characteristics of silicon carbide and alumina particles used for fluidized bed materials for the solar hybrid energy conversion process were studied in an ASTM D5757 reactor and a bubbling fluidized bed reactor with 0.14m diameter and 2m height. These characteristics of novel fluidized bed materials were compared with those of sand particles which have widely been used as a fluidized bed material in various commercial fluidized bed reactors. The attrition resistances of silicon carbide and alumina particles were higher than those of sand particles while the average values of heat transfer coefficient in the bubbling fluidized bed reactor were in the range of 125 ~ 152 W m-2K-1.

전기와 천연가스와 같이 안정적이며 신뢰할 수 있는 에너지를 현대 사회가 요구하기 때문에 재생에너지와 화석연료의 장점들을 모두 보유하고 있는 다양한 방식의 태양열 하이브리드 공정들이 세계 각국에서 개발되고 있다. 특히 고체 입자에 태양열을 저장하는 유동층 기반의 태양열 하이브리드 공정은 기존의 유동층 연소 및 가스화에 적용할 수 있을 것으로 기대받고 있다. 이에 본 연구에서는 ASTM D5757 반응기와 0.14 m의 직경과 2 m 높이의 유동층 반응기를 이용하여 태양열 하이브리드 공정의 유동층물질로서 검토되고 있는 실리콘 카바이드, 알루미나 입자들의 마모 및 열전달 특성을 고찰하였다. 특히 다양한 상업 유동층 반응기에서 유동층물질로 이용되는 모래와 비교하였다. 실리콘카바이드와 알루미나의 내마모성은 모래보다 우수하였으며 평균 열전달 계수도 125 ~ 152 W m-2K-1 범위를 가지는 것으로 고찰되었다.

Keywords

References

  1. Lee, S. H., "Development of a Hybrid Process for Energy Production via Solar Thermo-Chemical Conversion," News & Information for Chemical Engineers, 37, 200-206 (2019).
  2. Lee, S. H., Lee, T. H., Jeong, S. M., and Lee, J. M., "Economic Analysis of a 600 MWe Ultra Supercritical Circulating Fluidized Bed Power Plnat Based on Coal Tax and Biomass Co-Combustion Plans," Renewable Energy, 138, 121-127 (2019). https://doi.org/10.1016/j.renene.2019.01.074
  3. Gwak, Y. R., Kim, Y. B., Gwak, I. S., and Lee, S. H., "Economic Evaluation of Synthetic Ethanol Production by using Domestic Biowastes and Coal Mixture," Fuel, 213, 115-122 (2018). https://doi.org/10.1016/j.fuel.2017.10.101
  4. BP, BP energy outlook 2019 edition, www.bp.com (2019).
  5. Mills, S., "Combinging Solar Power with Coal-Fired Power Plants, or Cofiring Natural Gas," Clean Energy, 2, 1-9 (2018). https://doi.org/10.1093/ce/zky004
  6. Almendros-Ibanez, J. A., Fernandez-Torrijos, M., Diaz-Heras, M., Belmonte, J. F., and Sobrino, C., "A Review of Solar Thermal Energy Storage in Beds of Particles: Packed and Fluidized Beds," Solar Energy, 192, 193-237 (2019). https://doi.org/10.1016/j.solener.2018.05.047
  7. Lee, S. H., and Lee, J. M., "Introduction and Current Status of Ultra Supercritical Fliudized Bed Boiler," KEPCO J. Electric Power Energy, 2, 211-221 (2016). https://doi.org/10.18770/KEPCO.2016.02.02.211
  8. Verdolini, E., Vona, F., and Popp, D., "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," Energy Policy, 116, 242-256 (2018). https://doi.org/10.1016/j.enpol.2018.01.058
  9. https://www.power-eng.com/2016/08/17/study-says-renewable-power-still-reliant-on-backup-from-natural-gas/ (accessed Aug. 2016).
  10. Ma, Z., Mehos, M., Glatzmaier, G., and Sakadjian, B. B., "Development of a Concentrating Solar Power System using Fluidized Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage," Energy Procedia, 69, 1349-1359 (2015). https://doi.org/10.1016/j.egypro.2015.03.136
  11. Yoo, H. M., Um, N. I., Kim, Y. J., Cho, Y. A., Shin, S. K., and Kim, K. H., "Evaluation of Emission Characteristics on Co-combustion of Coal with TDF (Tire Derived Fuel) in a Cogeneration System, Applying the Circulating Fluidized Bed Boiler," J. Korea Soc. Waste Mnang., Vol. 34, 776-783 (2017). https://doi.org/10.9786/kswm.2017.34.8.776
  12. Kim, Y. B., Kang, S. Y., Seo, S. B., Keel, S. I., Yun, J. H., and Lee, S. H., "The Attrition and Calcination Characteristics of Domestic Limestones for In-Situ Desulfurization in Circulating Fluidized Bed Boilers," Korean Chem. Eng. Res., 57, 687-694 (2019). https://doi.org/10.9713/kcer.2019.57.5.687
  13. Kook, J. W., Shin, J. H., and Gwak, I. S., "A Reaction Kinetic Study of CO2 Gasification of Petroleum Coke, Biomass and Mixture," Appl. Chem. Eng., 26, 184-192 (2015). https://doi.org/10.14478/ace.2015.1006
  14. Park, H. C., Choi, M. K., and Choi, H. S., "A Study on the Characteristics of Cooling Heat Transfer for Carbon Black from Waste tire Pyrolysis Process," J. Korea Soc. Waste Manag., 36, 601-607 (2019). https://doi.org/10.9786/kswm.2019.36.7.601
  15. Goransson, K., Soderlind, U., He, J., and Zhang, W., "Review of Syngas Production via Biomass DFBGs," Renew. Sustain. Energy Rev., 15, 482-492 (2011). https://doi.org/10.1016/j.rser.2010.09.032
  16. Liu, T., Liu, Q., Lei, J., and Sui, J., "A New Solar Hybrid Clean Fuel-fired Distributed Energy System with Solar Thermochemcial Conversion," J. Clean. Prod., 213, 1011-1023 (2019). https://doi.org/10.1016/j.jclepro.2018.12.193
  17. Kim, Y. B., Kang, S. Y., Seo, S. B., Keel, S. I., Yun, J. H., and Lee, S. H., "The Attrition and Calcination Characteristics of Domestic Limestones for in-situ Desulfurization in Circulating Fluidized Bed Boilers," Korean Chem. Eng. Res., 57, 687-694 (2019). https://doi.org/10.9713/kcer.2019.57.5.687
  18. Lee, S. H., Yoon, S. J., Choi, Y. C., Kim, J. H., and Lee, J. G., "Characteristics of Coal Methanation in a Hydrogasifier," Korean Chem. Eng. Res., 44, 631-635 (2006).
  19. Kang, Y., Kim, Y. R., Ko, M. H., Seo, Y. C., Jin, G. T., Son, J. E., and Kim, S. D., "Immersed Heater-to-bed Heat Transfer in a Pressurized Gas-solid Fluidized Bed," Korean Chem. Eng. Res., 35, 282-288 (1997).
  20. Kang, S. H., Han, K. H., Jin, G. T., and Kang, Y., "Heat Transfer Characteristics in a Pressurized Fluidized Bed for Anthracite Coal Combustion," Korean Chem. Eng. Res., 40, 218-223 (2002).
  21. Hwang, G. J., Lee, B. K., Choi, M. K., and Choi, H. S., "A Study on Yield and Characteristics of Biocrude-oil Produced by Circulating Fluidized Bed Fast Pyrolyzer," J. Korea Soc. Waste Manag., 35, 126-133 (2018). https://doi.org/10.9786/kswm.2018.35.2.126