• Title/Summary/Keyword: thermally driven

Search Result 37, Processing Time 0.025 seconds

Numerical simulation of transient laminar compressible convection in a rectangular enclosure (사각형(四角形) 밀폐공간내(密閉空間內)의 과도(過度) 층류(層流) 압축성(壓縮性) 자연(自然) 대류(對流)에 관(關)한 수치해석적(數値解析的) 연구(硏究))

  • Kim, Byung-Yong
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 1982
  • The problem of transient laminar natural convection in compressible fluid in a rectangular enclosure is considered. The upper and lower boundaries of the enclosure are thermally insulating and the side boundaries are maintained at fixed temperatures. The fluid is considered to be a perfect gas with constant viscosity and thermal conductivity and the formulation differs from the boussinesq simplification in that the effects of variable density are completely retained. The motions are restricted to two dimensions. For incompressible fluid, the natural convection is driven mainly by buoyancy force. But the solutions show that for compressible fluid, the natural convection is driven by pressure and buoyancy forces and the thermally induced motion is acoustic in nature.

  • PDF

Effects of impurity (N2) on thermo-solutal convection during the physical vapor transport processes of mercurous chloride

  • Kim, Geug-Tae;Kim, Young-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.117-124
    • /
    • 2010
  • For Ar=5, Pr=1.18, Le=0.15, Pe=2.89, Cv=1.06, $P_B$=20 Torr, the effects of impurity $(N_2)$ on thermally and solutally buoyancy-driven convection ($Gr_t=3.46{\times}10^4$ and $Gr_s=6.02{\times}10^5$, respectively) are theoretically investigated for further understanding and insight into an essence of thermo-solutal convection occurring in the vapor phase during the physical vapor transport. For $10K{\leq}{\Delta}T{\leq}50K$, the crystal growth rates are intimately related and linearly proportional to a temperature difference between the source and crystal region which is a driving force for thermally buoyancy-driven convection. Moreover, both the dimensionless Peclet number (Pe) and dimensional maximum velocity magnitudes are directly and linearly proportional to ${\Delta}T$. The growth rate is second order-exponentially decayed for $2{\leq}Ar{\leq}5$. This is related to a finding that the effects of side walls tend to stabilize the thermo-solutal convection in the growth reactor. Finally, the growth rate is found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.

Fabrication of Thermally-Driven Polysilicon Microactuator and Its Characterization (열구동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성분석)

  • Lee, J.H.;Lee, C.S.;Yoo, H.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.153-159
    • /
    • 1997
  • A thermally-driven polysilicon microactuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS(tetraethylorthosilicate) oxide as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And newly developed HF GPE(gas-phase etching) process was also employed to eliminate the troublesome stiction problem using anhydrous HF gas and CH$_{3}$OH vapor, and successfully fabricated the microactuators. The actuation is incurred by the thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon microactuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10V and 50Hz square wave. The actuating characteris- tics are also compared with the simulalted results considering heat transfer and thermal expansion in the polysilicon layer. This microactuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF

Essence of thermal convection for physical vapor transport of mercurous chloride in regions of high vapor pressures

  • Kim, Geug-Tae;Lee, Kyong-Hwan;Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.231-237
    • /
    • 2007
  • For an aspect ratio (transport length-to-width) of 5, Pr=3.34, Le=0.078, Pe=4.16, Cv=1.01, $P_B=50$ Torr, only thermally buoyancy-driven convection ($Gr=4.83{\times}10^5$) is considered in this study in spite of the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B which would cause thermally and/or solutally buoyancy-driven convection. The crystal growth rate and the maximum velocity vector magnitude are decreased exponentially for $3{\le}Ar{\le}5$, for (1) adiabatic walls and (2) the linear temperature profile, with a fixed source temperature. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. The rate for the linear temperature profiles walls is slightly greater than for the adiabatic walls far varied temperature differences and aspect ratios. With the imposed thermal profile, a fixed source region, both the rate and the maximum velocity vector magnitude increase linearly with increasing the temperature difference for $10{\le}{\Delta}T{\le}50K$.

Effects of inert gas (Ne) on thermal convection of mercurous chloride system of $Hg_2Cl_2$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.225-231
    • /
    • 2008
  • For an aspect ratio (transport length-to-width) of 5, Pr=1.13, Le=1.91, Pe=4.3, Cv=1.01, $P_B=20\;Torr$, the effects of addition of inert gas Ne on thermally buoyancy-driven convection ($Gr=2.44{\times}10^3$) are numerically investigated for further understanding and insight into essence of transport phenomena in two dimensional horizontal enclosures. For $10K{\leq}{\Delta}T{\leq}50\;K$, the crystal growth rate increases from 10 K up to 20 K, and then is slowly decreased until ${\Delat}T=50\;K$, which is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. The dimensional maximum velocity gratitude reflecting the intensity of thermal convection is directly and linearly proportional to the temperature difference between the source and crystal regions. The rate is first order-exponentially decreased for $2{\leq}Ar{\leq}5$. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. In addition, the rate is first order exponentially decayed for $10{\leq}P_B{\leq}200\;Torr$.

Effect of aspect ratio on solutally buoyancy-driven convection in mercurous chloride $(Hg_2Cl_2)$ crystal growth processes

  • Kim, Geug-Tae;Lee, Kyoung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • For an aspect ratio (transport length-to-width) of 5, Pr = 2.89, Le = 0.018, Pe = 2.29, Cv = 1.11, $P_B$=40 Torr, solutally buoyancy-driven convection $(Gr_s=3.03{\times}10^5)$ due to the disparity in the molecular weights of the component A $(Hg_2Cl_2)$ and B (He) is stronger than thermally buoyancy-driven convection $(Cr_t=1.66{\times}10^4)$. The crystal growth rate is decreased exponentially for $2.5\;{\leq}\;Ar\;{\leq}\;5$, with (1) the linear temperature profile and a fixed temperature difference, (2) the imposed thermal profile, a fixed crystal region and varied temperature difference. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. But, with the imposed thermal profile, a fixed source region and varied temperature difference, the rate is increased far $2\;{\leq}\;Ar\;{\leq}\;3$, and remains nearly unchanged for $3\;{\leq}\;Ar\;{\leq}\;5$.

THERMALLY DRIVEN BUOYANCY WITHIN A HOT LAYER DUE TO SPRINKLER OPERATION

  • Nyankina, K.;F Turan, O.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.625-632
    • /
    • 1997
  • A two-dimensional zone-like model is developed to predict the interaction between hot gas layer and water droplets after sprinkler activation. The model combines the motion equations for each droplet with heat and mass transfer between the gas and water. The results indicate that negative buoyancy in the hot layer can only be obtained if the initial temperature profile is uniform. If an experimental profile Is used instead, positive buoyancy results. This conclusion has been confirmed with experimental data.

  • PDF

INTRODUCTION TO THE PHYSICS OF ACCRETION DISK

  • Wheeler, J. Craig
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.163-168
    • /
    • 1993
  • At intermediate mass transfer rates, accretion disks in binary star systems undergo a thermally-driven limit cycle instability. This instability leads to outburst episodes when the disk is bright and the flow through the disk is rapid separated by long intervals when the disk is dim and the flow through it is low. This intrinsic outburst mechanism can help to understand a wide range of astrophysical phenomena from dwarf novae to soft X -ray transients involving white dwarf, neutron star, and black holes. and to a deeper understanding of the mechanism of angular transport and viscosity in the accretion disk.

  • PDF

Characterization of thermally driven polysilicon micro actuator (폴리실리콘 마이크로 액츄에이터의 열구동 특성분석)

  • Lee, Chang-Seung;Lee, Jae-Youl;Chung, Hoi-Hwan;Lee, Jong-Hyun;Yoo, Hyung-Joun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.2004-2006
    • /
    • 1996
  • A thermally driven polysilicon micro actuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS (tetracthylorthosilicate) as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE (vapor phase etching) process was also used as an effective release method for the elimination of sacrificial TEOS layer. The thickneas of polysilicon is $2{\mu}m$ and the lengths of active and passive polysilicon cantilevers are $500{\mu}m$ and $260{\mu}m$, respectively. The actuation is incurred by die thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon micro actuator was experimentally conformed as large as $21{\mu}m$ at the input voltage level of 10V and 50Hz square wave. The actuating characteristics are investigated by simulating the phenomena of heat transfer and thermal expansion in the polysilicon layer. The displacement of actuator is analyzed to be proportional to the square of input voltage. These micro actuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as micro relay, which requires large displacement or contact force but relatively slow response.

  • PDF