• 제목/요약/키워드: thermal vapor deposition

검색결과 539건 처리시간 0.025초

CVD법을 이용한 그래핀합성에 미치는 온도와 압력의 영향 (Influence of Temperature and Pressure on Graphene Synthesis by Chemical Vapor Deposition)

  • 이은영;김성진;전흥우
    • 열처리공학회지
    • /
    • 제28권1호
    • /
    • pp.7-16
    • /
    • 2015
  • The fabrication of high quality graphene using chemical vapor deposition (CVD) method for application in semiconductor, display and transparent electrodes is investigated. Temperature and pressure have major impact on the growth of graphene. Graphene doping was obtained by deposition of $MoO_3$ thin films using thermal evaporator. Bilayer graphene and the metal layer graphene were obtained. According to the behavior of graphene growth P-type doping was confirmed. Graphene obtained through experiments was analyzed using optical microscopy, Raman spectroscopy, UV-visible light spectrophotometer, 4-point probe sheet resistance meter and atomic force microscopy.

CNT를 이용한 PEMFC 연료전지용 복합전극 개발 (The development of complex electrode for fuel cell using CNT)

  • 옥진희;;이준기;박상선;설용건
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.135.2-135.2
    • /
    • 2010
  • Carbon nanotube(CNT) has been spotlighted as a promising candidate for catalyst support material for PEMFC (proton exchange membrane fuel cell). The considerable properties of CNT include high surface area, outstanding thermal, electrical conductivity and mechanical stability. In this study, to fully utilize the properties of CNTs, we prepared directly oriented CNT on carbon paper as a catalyst support in the cathode electrode. The CNT layer was prepared by a chemical vapor deposition(CVD) process. And the Pt particles were deposited on the CNT oriented carbon paper by impregnation and eletro-deposition method. The potential advantages of directly oriented CNT on carbon paper can include improved thermal and charge transfer through direct contact between the electrolyte and the electrode and enhanced exposure of Pt catalyst sites during the reaction.

  • PDF

DMEAA를 이용한 알루미늄 PACVD법의 개발 (Development of Al plasma assisted chemical vapor deposition using DMEAA)

  • 김동찬;김병윤;이병일;김동환;주승기
    • 전자공학회논문지A
    • /
    • 제33A권10호
    • /
    • pp.98-106
    • /
    • 1996
  • A thin film of aluminum for ultra large scale integrated circuits metalization has been deposited on TiN and SiO$_{2}$ substrates by plasma assisted chemical vapor deposition using DMEAA (dimenthylethylamine alane) as a precursor. The effects of plasma on surface topology and growth characteristics were investigated. Thermal CVD Al could not be got continuous films on insulating subsrate such as SiO$_{2}$. However, it was found that Al films could be deposited on SiO$_{2}$ substate without any pretreatments by the hydrogen plasma for pyrolysis of DMEAA. Compared to the thermal CVD, PACVD films showed much better reflectance and resistance on TiN and SiO$_{2}$ substrate. We obtained mirror-like PACVD Al film of 90% reflectance and resistance on TiN and SiO$_{2}$ substrates. We obtained mirror-like PACVD Al film of 90% reflectance on TiN substrate. Excellent conformal step coverage was obtained on submicron contact holes ;by the PACVD blanket deposition.

  • PDF

Enhanced Control of OLED Deposition Processes by OVPD(R)

  • Schwambera, M.;Meyer, N.;Keiper, D.;Heuken, M.;Hartmann, S.;Kowalsky, W.;Farahzadi, A.;Niyamakom, P.;Beigmohamadi, M.;Wuttig, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.336-339
    • /
    • 2007
  • The enhanced control of OLED deposition processes by Organic Vapor Phase Deposition $(OVPD^{(R)})$ is discussed. $OVPD^{(R)}$ opens a wide space of process control parameters. It allows the accurate and individual control of deposition layer properties like morphology and precise mixing of multi component layers (co-deposition) in comparison to conventional deposition manufacturing processes like e. g. VTE (vacuum thermal evaporation).

  • PDF

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

Effect of Fe Catalyst on Growth of Carbon Nanotubes by thermal CVD

  • Yoon, Seung-Il;Heo, Sung-Taek;Kim, Sam-Soo;Lee, Yang-Kyu;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.760-763
    • /
    • 2007
  • The properties of carbon nanotube obtained by thermal chemical vapor deposition (CVD) process were investigated as a function of ammonia $(NH_3)$ gas in hydrocarbon gas, Fe catalyst thickness, and growth temperature. Fe catalyst was prepared by DC magnetron sputter and pre-treated with ammonia gas. CNTs were then grown with ammonia-acetylene gas mixture by thermal CVD. The diameter of these CNTs shows a strong correlation with the gas rate, the catalyst film thickness and temperature. From our results, it was found that the factors of grown CNTs positively acted to improve CNT quality.

  • PDF

OLED display manufacturing by Organic Vapor Phase Deposition

  • Marheineke, B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1676-1681
    • /
    • 2006
  • We report on Organic Vapor Phase Deposition $(OVPD^{(R)})$ an innovative deposition technology for organic light emitting device (OLED) and organic semiconductor manufacturing. The combination of $OVPD^{(R)}$ with Close Coupled Showerhead (CCS) technology results in manufacturing equipment with vast potential for cost effective manufacturing of OLED displays commercially competitive to LCD. The actual $OVPD^{(R)}$ equipment concept and design is discussed: Computational Fluid Dynamic (CFD) modeling is compared with experimental results proving the excellent controllability of the deposition process. Further other production relevant deposition properties are being reviewed e.g. high deposition rates and high organic material utilization efficiency of the $OVPD^{(R)}$ - Technology. Data from devices made by $OVPD^{(R)}$ show comparable/ superior performance to those fabricated with conventional vacuum thermal evaporation (VTE) techniques. An outlook on further potentials of $OVPD^{(R)}$ with respect to enabling advanced organic device structures is given.

  • PDF

CVD 에 의한 대면적 실리콘기판위에서 수직방향으로 정렬된 탄소나노튜브의 성장 (Growth of vertically aligned carbon nanotubes on a large area silicon substrates by chemical vapor deposition)

  • 이철진;박정훈;손권희;김대운;이태재;류승철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.860-862
    • /
    • 1999
  • we have grown vertically aligned carbon nanotubes on a large area of Co-Ni codeposited Si substrates by thermal chemical vapor deposition using $C_{2}H_{2}$ gas. The carbon nanotubes grown by the thermal chemical vapor deposition are multi-wall structure, and the wall solace of nanotubes is covered with defective carbons or carbonaceous particles. The carbon nanotubes range from 50 to 120nm in diameter and about $130{\mu}m$ in length at $950^{\circ}C$. The turn-on voltage was about $0.8V/{\mu}m$ with a current density of $0.1{\mu}A/cm^2$ and emission current reveals the Fowler-Nordheim mode.

  • PDF

Stability of Sputtered Hf-Silicate Films in Poly Si/Hf-Silicate Gate Stack Under the Chemical Vapor Deposition of Poly Si and by Annealing

  • Kang, Sung-Kwan;Sinclair, Robert;Ko, Dae-Hong
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.637-641
    • /
    • 2004
  • We investigated the effects of SiH$_4$ gas on the surface of Hf-silicate films during the deposition of polycrystalline (poly) Si films and the thermal stability of sputtered Hf-silicate films in poly Si/Hf-silicate structure by using High Resolution Transmission Electron Microscopy (HR-TEM) and X-ray Photoelectron Spectroscopy (XPS). Hf-silicate films were deposited by using DC-mag-netron sputtering with Hf target and Si target and poly Si films were deposited at 600$^{\circ}C$ by using Low Pressure Chemical Vapor Deposition (LPCVD) with SiH$_4$ gas. After poly Si film deposition at 600$^{\circ}C$, Hf silicide layer was observed between poly Si and Hf-silicate films due to the reaction between active SiH$_4$ gas and Hf-silicate films. After annealing at 900$^{\circ}C$, Hf silicide, formed during the deposition of poly Si, changed to Hf-silicate and the phase separation of the silicate was not observed. In addition, the Hf-silicate films remain amorphous phase.