• 제목/요약/키워드: thermal transfer

검색결과 3,006건 처리시간 0.028초

터보 디젤엔진 피스톤의 열응력 해석에 관한 연구 (A Study on the Thermal Stress Analysis of a Piston in a Turbocharged Diesel Engine)

  • 국종영
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.92-98
    • /
    • 2001
  • We determined the transfer coefficient through the analysis of three dimensional temperature distribution in comparison with the measured temperature on the piston in the turbocharged diesel engine. And we analyzed the thermal stress and the thermal deformation with that heat transfer coefficient by using finite element method. According to this results, we found that maximum tempetature range of the piston appeared at the upper part of the piston crown and that the heat transfer coefficient of the upper part of the piston is smaller than that of the lower one. It showed that the maximum thermal deformation is shown at the edge of the upper part of piston and that the maximum thermal stress was shown on the lower part of the piston crown. Finally, we defined the method of determination of a piston heat transfer analysis by using measured temperature on the piston and analyzed temperature with finite element method.

  • PDF

복사에너지를 이용한 TIM소재의 방열 특성 향상을 위한 연구 (Study on Improvement of Heat Dissipation Characteristics of TIM Material Using Radiant Energy)

  • 황명원;김도형;정우창;정원섭
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.58-61
    • /
    • 2019
  • The aim of this study is to quantitatively demonstrate the possibility of heat transfer by thermal radiation by comparing heat transfer by conventional heat transfer and radiation by radiation. 1) The heat transfer was measured by using filler of TIM material with low thermal conductivity (CuS). As a result, heat transfer was easier than ceramic with high thermal conductivity ($Al_2O_3$ and $Si_3N_4$). 2) The reason for this is thought to be that the infrared wave due to radiation of the air diaphragm has moved easily. 3) From the above results, the heat dissipation of the TIM material indicates the possibility of heat transfer by thermal radiation.

열전달계수에 대한 새로운 고찰 및 고-중압 터빈 케이싱 모형의 열응력 해석 (A new consideration for the heat transfer coefficient and an analysis of the thermal stress of the high-interim pressure turbine casing model)

  • 엄달선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.425-429
    • /
    • 2004
  • In real design of the high & interim pressure turbine casing, it is one of the important things to figure out its thermal strain exactly. In this paper, with the establishment of the new concept for the heat transfer coefficient of steam that is one of the factors in analysis of the thermal stress for turbine casing, an analysis was done for one of the high & interim pressure turbine casings in operating domestically. The sensitivity analysis of the heat transfer coefficient of steam to the thermal strain of the turbine casing was done with a 2-D simple model. The analysis was also done with switching of the material properties of the turbine casing and resulted in that the thermal strain of the turbine casing was not so sensitive to the heat transfer coefficient of steam. On the basis of this, 3-D analysis of the thermal strain for the high and interim pressure turbine casing was done.

  • PDF

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • 한국포장학회지
    • /
    • 제12권1호
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF

스크린 인쇄법 및 열전사법에 의한 VPT 형광막의 형성연구 (A Study on VPT phosphor screen formed by screen printing and thermal transfer method)

  • 조미정;남수용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.593-594
    • /
    • 2006
  • A novel thermal transfer method was developed to form the phosphor screen for VPT(Video Phone Tube). This method have advantages of simple process, clean environment, saving raw material and running-cost comparison of electrodeposition, spin coating of conventional methods. But now applying phosphor screen for thermal transfer method has been formed three layers (phosphor layer, ITO layer and thermal adhesive layer) on the PET film as substrate. This is complex process, run to waste of raw-material and require of high cost. Also ITO paste at present has been imported from Japan. To improve these problems, we have manufactured phosphor screen formed by two layers (phosphor layer and ITO layer). We have developed ITO paste that had both conductive and excellent thermal transfer abilities, made it of domestic raw-material.

  • PDF

화력발전소에서 용융회가 열전달 감소에 미치는 영향에 관한 연구 (A Study on the Heat Transfer Reduction due to the Clinker in the Thermal Poorer Plant)

  • 강희찬;이규욱
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.13-19
    • /
    • 2000
  • This study was conducted for the heat transfer reduction due to the clinker formed in the furnace of the thermal power plant. The thermal properties of clinker such as thermal conductivity, specific heat, density and void fraction were measured. The thermal conductivities of the clinker were ranged $0.32-0.54W/m{\cdot}K$ and the average specific heat and the void fraction were $930J/kg{\cdot}K$ and 0.36 respectively. The thermal resistance of clinker was the greatest among the thermal resistances. It was found that the clinker reduces more than 90% of the heat transfer if the clinker is thicker than 10 cm.

  • PDF

$Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향 (Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics)

  • 한봉석;이홍림;전명철
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

The Model and Experiment for Heat Transfer Characteristics of Nanoporous Silica Aerogel

  • Mingliang, Zheng
    • 한국재료학회지
    • /
    • 제30권4호
    • /
    • pp.155-159
    • /
    • 2020
  • Nanoporous silica aerogel insulation material is both lightweight and efficient; it has important value in the fields of aerospace, petrochemicals, electric metallurgy, shipbuilding, precision instruments, and so on. A theoretical calculation model and experimental measurement of equivalent thermal conductivity for nanoporous silica aerogel insulation material are introduced in this paper. The heat transfer characteristics and thermal insulation principle of aerogel nano are analyzed. The methods of SiO2 aerogel production are compared. The pressure range of SiO2 aerogel is 1Pa-atmospheric pressure; the temperature range is room temperature-900K. The pore diameter range of particle SiO2 aerogel is about 5 to 100 nm, and the average pore diameter range of about 20 ~ 40 nm. These results show that experimental measurements are in good agreement with theoretical calculation values. For nanoporous silica aerogel insulation material, the heat transfer calculation method suitable for nanotechnology can precisely calculate the equivalent thermal conductivity of aerogel nano insulation materials. The network structure is the reason why the thermal conductivity of the aerogel is very low. Heat transfer of materials is mainly realized by convection, radiation, and heat transfer. Therefore, the thermal conductivity of the heat transfer path in aerogel can be reduced by nanotechnology.

소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Analysis of the thermal behaviors of the cylinder block of a small gasoline engine)

  • 김병탁;박진무
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

유한 요소 해석을 활용한 직결 주축의 열적 특성 평가 (Evaluation of Thermal Characteristics of a Direct-Connection Spindle Using Finite Element Co-Analysis)

  • 김태원;최진우
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.228-234
    • /
    • 2013
  • This study focuses on development of a finite element model for analysis of thermal characteristics of a direct-connection spindle of a machining center by joint simulation of heat transfer and thermal deformation. Two finite element analyses were carried out procedurally for heat transfer, first, to identify temperature distribution of components of the spindle and then for thermal deformation to identify their structural behavior based on the temperature distribution. It was assumed that the heat transfer between a component revolving and the surrounding air is identical to that between a flat plate and the running air on it and the heat transfer is based on a uniform surface heat flux for turbulent flow. The results from the analyses were compared with those from experiments to validate the finite element model.