• 제목/요약/키워드: thermal stresses

검색결과 832건 처리시간 0.029초

교각 코핑부의 외기온도와 타설온도에 따른 수화열 해석 (Hydration Heat Analysis of Coping With Ambient and Placing Concrete Temperature)

  • 양주경
    • 한국컴퓨터산업학회논문지
    • /
    • 제9권3호
    • /
    • pp.99-104
    • /
    • 2008
  • 매스콘크리트에서 수화열에 의한 응력은 외기온도와 콘크리트의 타설온도에 따라 변하므로 이들의 영향을 고려한 해석이 필요하다. 본 연구에서는 교각의 코핑부를 대상으로 해석을 수행하여 분석하였다. 최대 인장응력은 타설 후 2.75일을 전후하여 표면 모서리부에서 발생하며 균열지수는 계속 증가하여 균열 발생 가능성은 거의 없는 것으로 나타났다. 그리고 계절에 관계없이 콘크리트의 타설온도를 낮추면 수화열에 의한 균열 발생 가능성을 줄일 수 있는 것으로 나타났다. 따라서 콘크리트를 타설하기 전에 타설온도를 낮추기 위한 여러 가지 방안을 강구하면 수화열에 의한 균열을 최소화할 수 있다.

  • PDF

Change of transmission characteristics of FSSs in hybrid composites due to residual stresses

  • Hwang, In-Han;Chun, Heoung-Jae;Hong, Ik-Pyo;Park, Yong-Bae;Kim, Yoon-Jae
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1501-1510
    • /
    • 2015
  • The frequency selective surface (FSS) embedded hybrid composite materials have been developed to provide excellent mechanical and specific electromagnetic properties. Radar absorbing structures (RASs) are an example material that provides both radar absorbing properties and structural characteristics. The absorbing efficiency of an RAS can be improved using selected materials having special absorptive properties and structural characteristics and can be in the form of multi-layers or have a certain stacking sequence. However, residual stresses occur in FSS embedded composite structures after co-curing due to a mismatch between the coefficients of thermal expansion of the FSS and the composite material. In this study, to develop an RAS, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis, considering the effect of stacking sequence of composite laminates with square loop (SL) and double square loop (DSL) FSS patterns. The FSS radar absorbing efficiency was measured in the K-band frequency range of 21.6 GHz. Residual stress leads to a change in the deformation of the FSS pattern. Using these results, the effect of transmission characteristics with respect to the deformation on FSS pattern was analyzed using an FSS Simulator.

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.399-423
    • /
    • 2013
  • In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

허스롤 목 부위 형상 변화에 따른 열응력 분포 변화 유한요소해석 (Finite Element Analysis of Thermal Stresses on a Hearth Roll Surface Depending on Changes in the Neck Shape)

  • 나두현;이영석
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.169-175
    • /
    • 2016
  • The hearth roll, which transfers the cold-rolled strip sheet in a Continuous Annealing Line (CAL), is always subjected to changes in the surface temperature and subsequently experiences thermal stress in service. These variations lead to the generation of thermal cracks on the hearth roll surface as well local plastic deformation. We performed finite element analysis to predict the thermal stress changes on the hearth roll surface and designed the collar shape of the hearth roll to minimize these thermal stresses. Results show that the hearth roll with a collar having an obtuse angle is much more effective than a hearth roll with collar having a right angle when the tangential stress, which is one of main causes leading to surface cracks, is compared for the various conditions. It was found that the tangential stress and the temperature on the surface of hearth roll can be reduced by 51.9% and 26℃ if the shape of roll on collar is re-designed.

Aluminium Titanate Sintering Study Aimed at Rational Design of Microstructure for Optimal Thermal Shock Characteristics

  • Alecu, Ioan D.;Stead, Rodney J.
    • The Korean Journal of Ceramics
    • /
    • 제5권1호
    • /
    • pp.78-81
    • /
    • 1999
  • Aluminium titanate is highly anisotropic in thermal expansion. As a result, thermal stresses build up in the material and intergranular cracks can develop. Both the outstanding thermal shock resistance and the low mechanical strength of aluminium titanate ceramics are a result of intergranular microcracking. The authors have previously identified a possibility of remarkably increasing fracture toughness of aluminium titanate without excessive penalty on strength. The paper shows that sintered density and porosity measurements can be used for optimizing the sintering and microstructure of aluminium titanate for an ideal balance between toughness and strength and, hence, the best thermal shock resistance.

  • PDF

콘크리트의 열전도율에 관한 실험적 연구 (Experiments on Thermal Conductivity of Concrete)

  • 김진근;전상은;양은익;김국한;조명석;방기성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.946-951
    • /
    • 1998
  • In order to calculate the thermal stresses of massive concrete structures in non-steady state conditions the thermal properties of the materials have to be well known. Structural materials such as concrete, rock and soil are heterogeneous, damp and porous so that measurements of their thermal properties by conventional methods would result in large errors. In this study, thermal conductivity was measured by the device, QTM-D3 which is usually used in Japan. Variables are chosen as age, water content, temperature, aggregate content, S/A ratio and type of cementitious materials. Finally a model for thermal conductivity was proposed.

  • PDF

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • 소대화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

이종금속용접부 온도 및 잔류응력의 라운드로빈 해석 (A Round-Robin Analysis of Temperature and Residual Stresses in Dissimilar Metal Weld)

  • 송민섭;강선예;박준수;손갑헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.85-87
    • /
    • 2008
  • DMWs are common feature of the PWR in the welded connections between carbon steel and stainless steel piping. The nickel-based weld metal, Alloy 82/182, is used for welding the dissimilar metals and is known to be susceptible to PWSCC. A round-robin program has been implemented to benchmark the numerical simulation of the transient temperature and weld residual stresses in the DMWs. To solve the round-robin problem related to Pressurizer Safety & Relief nozzle, the thermal elasto-plastic analysis is performed in the DMW by using the FEM. The welding includes both the DMW of the nozzle to safe-end and the SMW of the safe-end and piping. Major results of the analyses are discussed: The axial and circumferential residual stresses are found to be -88MPa(225MPa) and -38MPa(293MPa) on the inner surface of the DMW; where the values in parenthesis are the residual stresses after the DMW. Thermo-mechanical interaction by the SMW has a significant effect on the residual stress fields in the DMW.

  • PDF

a-Si 박막형 태양전지의 잔류응력 해석에 관한 연구 (A Study on the Residual Stress Analysis of a-Si Thin Film Solar Cell)

  • 허장욱;김동욱;최성대
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.14-19
    • /
    • 2013
  • The size and distribution of residual stresses and the effect of the minimum mesh size were investigated by the a-Si thin film solar cell. Attributed to the difference in coefficient of thermal expansion of the a-Si and Ag concentrated residual stresses at the joint interface of dissimilar materials. The ${\sigma}y$ and ${\tau}xy$ didn't appear in the central part, but ${\sigma}x$ existed. However, ${\sigma}x$, ${\sigma}y$ and ${\tau}xy$ appeared in the edge part and concentrated residual stresses at the interface between a-Si and Ag. Minimum mesh size gets smaller, the concentration of ${\sigma}y$ was significantly and existence area was reduced. As a result, the failure of thin film solar cells during the cutting process can be explained by the residual stresses.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.