• Title/Summary/Keyword: thermal stratification

Search Result 281, Processing Time 0.02 seconds

Analysis of the second grade fluid under the influence of thermal radiation with convective heat and mass transfer

  • Khurrum Fareed;Muzamal Hussain;Muhammad Taj;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.347-353
    • /
    • 2024
  • This paper investigates the second-grade fluid between two parallel plates. Fluid is produced due to stretching. Convective heat and mass transfer features are elaborated with thermal and solutal stratification. Thermal radiation and chemical reactions are also assumed in heat and mass transport processes partial differential. Formulated non-linear partial differential equations are transformed into non-linear ordinary differential equations by utilizing the suitable transformation. Convergent series solutions are computed via Homotopy Analysis Method (HAM). Effects of Hartman number, temperature field, velocity distribution and Prandtl number are sketched and analyzed through graphs. It is noticed that velocity field first decreases and after some distance it shows increasing behavior by the increment.

Strategic Operation of the Artificial Aeration System for Water Quality Management of the Reservoir (저수지 수질관리를 위한 인공폭기 장치의 최적운전방안)

  • Lim, Kyeong-Ho;Jeong, Sang-Man;Han, Young-Sung;Park, Young-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.261-270
    • /
    • 2002
  • The artificial aeration in the middle and the small scale reservoirs is widely used to destroy the stratified layer and algal boom. This study has been conducted at the Youncho reservoir located in Keoje island since Jan. 2000 to suggest the most suitable control strategy of the artificial aeration and reduce the side effect. The main results obtained from this research are as follows. The starting time of aeration for destratification was adjusted from the end of March to the beginning of April when the natural stratification is started. In order to prevent an anoxic condition the artificial mixing should be started by the middle of April when the DO in hypolimnion is dropped to less than $5mg/{\ell}$. The decrease DO, caused by the increase in water temperature, spreads rapidly from hypolimnion to themocline. Thermal stratification disappeared after the onset of artificial aeration within 7 days in the Yuncho reservoir. The air diffusers decrease water temperature in the layer of epilimnion and thermocline, but rise it in hypolimnion. The continuous operation of air diffuser prevent the stratification and anoxic condition in hypolimnion despite of the rising of water temperature and algal abundance. The algal abundance is not observed in effective zone by aeration. The turbidity rising problem induced from the aeration is avoided by keeping an air diffuser about 1.5m high from the bottom of lake. During the summer season, ceasing the aeration should be decided carefully. And also, it is necessary to operate the system it considering weather and temperature, and depending on the number and the position of aerators.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

A Study on Buoyancy Effects in Double-Diffusive Convecting System(II) - Theoretical Study - (이중확산 대류계에서의 부력효과에 관한 연구(II) - 이론적 연구 -)

  • Hong, Nam-Ho;Kim, Min-Chan;Hyun, Myung-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.129-137
    • /
    • 1999
  • The time of the onset of double-diffusive convection in time-dependent, nonlinear concentration fields is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform temperature gradient experiences a sudden concentration change from below, but its stable thermal stratification affects concentration effects in such way to invoke convective motion. The related stability analysis, including Soret effect, is conducted on the basis of the propagation theory. Under the linear stability theory the concentration penetration depth is used as a length scaling factor, and the similarity transform for the linearized perturbation equations. The newlly obtained stability equations are solved numerically. The resulting critical time to mark the onset of regular cells are obtained as a function of the thermal Rayleigh number, the solute Rayleigh number, and the Soret effect coefficient. For a certain value of the Soret effect coefficient, the stable thermal gradient promote double-diffusive convective motion.

  • PDF

ASSESSMENT OF MARS FOR DIRECT CONTACT CONDENSATION IN THE CORE MAKE-UP TANK (노심보충수탱크의 직접접촉응축에 대한 MARS의 계산능력평가)

  • Park, Keun Tae;Park, Ik Kyu;Lee, Seung Wook;Park, Hyun Sik
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.64-72
    • /
    • 2014
  • This study aimed at assessing the analysis capability of thermal-hydraulic computer code, MARS for the behaviors of the core make-up tank (CMT). The sensitivity study on the nodalization to simulate the CMT was conducted, and the MARS calculations were compared with KAIST experimental data and RELAP5/MOD3.3 calculations. The 12-node model was fixed through a nodalization study to investigate the effect of the number of nodes in the CMT (2-, 4-, 8-, 12-, 16-node). The sensitivity studies on various parameters, such as water subcooling of the CMT, steam pressure, and natural circulation flow were done. MARS calculations were reasonable in the injection time and the effects of several parameters on the CMT behaviors even though the mesh-dependency should be properly treated for reactor applications.

Effect of Radiative Mean Temperature on Thermal Comfort of Underfloor Air Distribution System (바닥공조시스템에서 복사온도가 열적 쾌적성에 미치는 영향)

  • Chung, Jae-Dong;Hong, Hi-Ki;Yoo, Ho-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.711-717
    • /
    • 2008
  • Despite the fact that UFAD(Under Floor Air Distribution) systems have many benefits and are being applied in the field in increasing numbers, there is a strong need for an improved fundamental understanding of several key performance features of these systems. This study numerically investigates the effect of supplied air temperature and supplied flow rate on the performance of UFAD, especially focused on thermal comfort. Also this study has compared UFAD with conventional overhead air distribution system. In contrast to the well-mixed room air conditions of the conventional overheat system, UFAD system produces an overall floor-to-ceiling airflow pattern that takes advantage of the natural buoyancy produced by heat sources in the occupied zone and more efficiently removes heat loads and contaminants from the space. Thermal comfort parameters were evaluated by CFD approach and then PMV was computed to detect the occupants' thermal sensation. Results show that radiative mean temperature plays crucial role on the evaluating PMV. Until now, the radiative temperature has been the missing link between CFD and thermal comfort, but the present study paves the way for overcoming this weakness.

OVERVIEW OF RECENT EFFORTS THROUGH ROSA/LSTF EXPERIMENTS

  • Nakamura, Hideo;Watanabe, Tadashi;Takeda, Takeshi;Maruyama, Yu;Suzuki, Mitsuhiro
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.753-764
    • /
    • 2009
  • JAEA started the LSTF experiments in 1985 for the fourth stage of the ROSA Program (ROSA-IV) for the LWR thermal-hydraulic safety research to identify and investigate the thermal-hydraulic phenomena and to confirm the effectiveness of ECCS during small-break LOCAs and operational transients. The LSTF experiments are underway for the ROSA-V Program and the OECD/NEA ROSA Project that intends to resolve issues in thermal-hydraulic analyses relevant to LWR safety. Six types of the LSTF experiments have been done for both the system integral and separate-effect experiments among international members from 14 countries. Results of four experiments for the ROSA Project are briefly presented with analysis by a best-estimate (BE) code and a computational fluid dynamics (CFD) code to illustrate the capability of the LSTF and codes to simulate the thermal-hydraulic phenomena that may appear during SBLOCAs and transients. The thermal-hydraulic phenomena dealt with are coolant mixing and temperature stratification, water hammer up to high system pressure, natural circulation under high core power condition, and non-condensable gas effect during asymmetric SG depressurization as an AM action.

A Study on the Indoor Thermal Environment of the Large Gymnasium Space in Winter - Without Heat Loads from Occupancy - (대규모 실내경기장의 동계 온열환경 특성 실측조사 - 인체부하 미고려 조건 -)

  • Choi, Dong-Ho;Jeong, Seong-Jin;Seok, Ho-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.67-77
    • /
    • 2007
  • The purpose of this study is to provide fundamental heating design data for the large public enclosures as gymnasium. This study executed indoor thermal environment verification of the existing gymnasium by measuring temperature distribution with and without heating the space in winter. Heating loads from human body was not considered. We examined various indoor thermal environment factors of the large enclosed space in this study which include vertical and horizontal temperature distribution, supply and return air flow feature, thermal comfort environment feature, amount of ventilation and etc.

  • PDF

A Study on the Indoor Thermal Environment of the Large Enclosure Without Cooling Loads from Occupancy in Summer (대공간내 인체발열 미고려시의 하계 온열환경 조사)

  • Jeong, Seong-Jin;Choi, Dong-Ho;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.3-8
    • /
    • 2008
  • The purpose of this study is to provide fundamental cooling design data for the large public enclosures as gymnasium. This study executed indoor thermal environment verification of the existing gymnasium by measuring temperature distribution with cooling the space in summer. Cooling loads from human body was not considered. We examined various indoor thermal environment factors of the large enclosed space in this study which include vertical and horizontal temperature distribution, supply and return air flow feature, thermal comfort environment feature, amount of ventilation and etc.

  • PDF

A Study on the Indoor Thermal Environment of the Large Gymnasium Space in Summer - Without Cooling Loads from Occupancy - (대규모 실내경기장의 하계 온열환경 특성 실측조사 - 인체부하 미고려 조건 -)

  • Jeong, Seong-Jin;Choi, Dong-Ho;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.91-101
    • /
    • 2007
  • The purpose of this study is to provide fundamental cooling design data for the large public enclosures as gymnasium. This study executed indoor thermal environment verification of the existing gymnasium by measuring temperature distribution with and without cooling the space in summer. Colling loads from human body was not considered. We examined various indoor thermal environment factors of the large enclosed space in this study which include vertical and horizontal temperature distribution, supply and return air flow feature, thermal comfort environment feature, amount of ventilation and etc.

  • PDF