• Title/Summary/Keyword: thermal storage system

Search Result 650, Processing Time 0.027 seconds

The Study of Thermal Properties of TMA Clathrate on Additives (첨가제를 첨가한 TMA 물계-포접화합물의 열물성 연구)

  • Kim, K.I.;Chung, N.K.;Kim, J.H.;Kim, C.O.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.250-255
    • /
    • 2003
  • TMA clathrate that is used as PCM of low temperature thermal storage system in this research creates hydrate crystallization at higher temperature then pure water, and its application is expected as PCM because of comparatively big latent heat without phase separation phenomenon. Acetone, Ethylen Glycol, and Ethanol is used as additive and evaluated experimentally for the purpose of the improvement in subcooling of TMA clathrate. In view of the results so far achieved subcooling is improved, the running time of the refrigerator is reduced. Thus the results are expected to use for the increase of coefficient of performance of low temperature thermal storage system in the building.

  • PDF

The Influence of Groundwater Flow on the Performance of an Aquifer Thermal Energy Storage (ATES) System (지하수류가 대수층 열저장 시스템의 성능에 미치는 영향(3))

  • Hahn, Jeongsang;Lee, Juhyun;Kiem, Youngseek;Lee, Kwangjin;Hong, Kyungsik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.9-26
    • /
    • 2017
  • When a warm well located downgradient is captured by cold thermal plume originated from an upgradient cold well, the warm thermal plume is pushed further downgradient in the direction of groundwater flow. If groundwater flow direction is parallel to an aquifer thermal energy storage (ATES), the warm well can no longer be utilized as a heat source during the winter season because of the reduced heat capacity of the warm groundwater. It has been found that when the specific discharge is increased by $1{\times}10^{-7}m/s$ in this situation, the performance of ATES is decreased by approximately 2.9% in the warm thermal plume, and approximately 6.5% in the cold thermal plume. An increase of the specific discharge in a permeable hydrogeothermal system with a relatively large hydraulic gradient creates serious thermal interferences between warm and cold thermal plumes. Therefore, an area comprising a permeable aquifer system with large hydraulic gradient should not be used for ATES site. In case of ATES located perpendicular to groundwater flow, when the specific discharge is increased by $1{\times}10^{-7}m/s$ in the warm thermal plume, the performance of ATES is decreased by about 2.5%. This is 13.8% less reduced performance than the parallel case, indicating that an increase of groundwater flow tends to decrease the thermal interference between cold and warm wells. The system performance of ATES that is perpendicular to groundwater flow is much better than that of parallel ATES.

Heat Transfer Characteristics of the Spherical Capsule Storage System Using Paraffins

  • Cho, Keum-Nam;Choi, S. H.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.113-123
    • /
    • 1998
  • The present study is to investigate the effect of experimental parameters on the heat transfer characteristics of a spherical capsule storage system using paraffins. N-Tetradecane and mixture of n-Tetradecane 40% and n-Hexadecane 60% were used as paraffins. Water with inorganic material was also tested for the comparison. The experimental parameters were varied for the Reynolds number from 8 to 16 and for the inlet temperature from -7 to 2$^{\circ}C$. Measured local temperatures of spherical capsules in the storage tank were utilized to calculate charging and discharging times, dimensionless thermal storage amount, and the average heat transfer coefficients in the tank. Local charging and discharging times in the storage tank were significantly different. The effect of inlet temperature on charging time was larger than that on discharging time, but the effect of Reynolds number on charging time was smaller than that on discharging time. Charging time of paraffins was faster by 11~72% than that of water with inorganic material, but little difference of discharging time was found among them. The effect of Reynolds number on the dimensionless thermal storage was less during charging process and more during discharging process than the effect of inlet temperature. The effect of the inlet temperature and the Reynolds number on the average heat transfer coefficient of the storage tank was stronger during discharging process than during charging process. The average heat transfer coefficients of the spherical capsule system using paraffins were larger by 40% than those using water.

  • PDF

Effects of Refrigerant Subcooling on the Performance of indirectly Ice Thermal Storage Cooling System (축열조 간접이용 냉매 과냉각형 시스템에서 과냉도가 시스템 성능에 미치는 영향)

  • Lee, Soo-Yang;Park, Shung-Sang;Peck, Jong-Hyeon;Chung, Dong-Yeol;Park, Il-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.979-983
    • /
    • 2009
  • This study has been conducted the possibility of the subcooling type ice storage cooling system that the stored ice used to subcool the condensed refrigerant. The experimental study was done to fine the characteristics of the cooling capacity according to the variation of the subcooling degree and the analysis for the peak shift effect of the full storage, partial storage and subcooling type ice storage system compared to the normal air conditioning system was also done. The result of the analysis was shown that the peak shift effect of this subcooling type ice storage system could be 61%.

  • PDF

CFD Analysis for Spiral-Jacketed Thermal Storage Tank in Solar Heating Systems (태양열 시스템에 적용된 나선재킷형 축열조의 CFD 해석)

  • Nam, Jin-Hyun;Kim, Min-Cheol;Kim, Charn-Jung;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.645-653
    • /
    • 2008
  • Spiral-jacketed thermal storage tanks can greatly simplify solar heating systems while maintaining the thermal performance at a similar level as conventional systems with an external heat exchanger. Proper design of the spiral-jacket flow path is essential to make the most of solar energy, and thus to maximize the thermal performance. In the present work, computational fluid dynamics (CFD) analysis was carried out for a spiral-jacketed storage tank installed in a solar heating demonstration system. The results of the CFD analysis showed a good agreement with experimentally determined thermal performance indices such as the acquired heat, collector efficiency, and mixed temperature in the storage tank. This verified CFD modelling approach can be a useful design tool in optimizing the shape of spiral-jacket flow path and the flow rate of circulating fluid for better performance.

A Study on the District Community Cooling System using LNG Cold Energy (LNG 냉열이용 지역집단 냉방시스템에 대한 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.27-30
    • /
    • 2010
  • This paper presents the system design process of district community cooling system using LNG cold energy. The newly developed LNG cooling system includes several heat exchangers, LNG storage tank, thermal mass storage tank, several cold energy storage tanks, gas air-conditioners, compressors, constant pressure regulators, cold energy and hot energy supply pipes. In addition, the gas air-conditioner system is installed to supply not sufficient cold energy due to low level of city gas consumptions during a summer period. This system design is very effective and safe to supply cold energy mass of fresh air by exchanging two thermal masses of an air and 200kcal/kg cold energy of LNG. The district community cooling system with LNG cold energy does not produce CO2 and freon gases in the air.

A Study on the Characteristic of Heat Transfer of PCM(Phase Change Material) at the Simultaneous Charging and Discharging Condition (동시 축·방열 조건에서 PCM의 열전달 특성에 관한 연구)

  • Lee, Donggyu;Park, Sechang;Chung, Dong-yeol;Kang, Cheadong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.305-310
    • /
    • 2016
  • A thermal storage systems was designed to correspond to the temporal or quantitative variation in the thermal energy demand, and most of its heat is stored using the latent and sensible heat of the heat storage material. The heat storage method using latent heat has a very complex phenomenon for heat transfer and thermal behavior because it is accompanied by a phase change in the course of heating/cooling of the heat storage material. Therefore, many studies have been conducted to produce an experimentally accessible as well as numerical approach to confirm the heat transfer and thermal behavior of phase change materials. The purpose of this study was to investigate the problems encountered during the actual heat transfer from an internal storage tank through simulation of the process of storing and utilizing thermal energy from the thermal storage tank containing charged PCM. This study used analysis methods to investigate the heat transfer characteristics of the PCM with simultaneous heating/cooling conditions in the rectangular space simulating the thermal storage tank. A numerical analysis was carried out in a state considering natural convection using the ANSYS FLUENT(R) program. The result indicates that the slope of the liquid-solid interface in the analysis field changed according to the temperature difference between the heating surface and cooling surface.

Performance Analysis of a Panel Type Latent Heat Storage Equipment for Solar Thermal Storage (태양열저장(太陽熱貯藏)을 위한 평판형잠열축열장치(平板形潛熱蓄熱裝置)의 성능분석(性能分析))

  • Kim, Y.B.;Ju, E.S.;Yun, Y.D.;La, W.J.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.290-297
    • /
    • 1991
  • For the efficient utilization of the solar thermal energy to overcome the time gap between to supply and demand, an efficient heat storage technique, especially high density-latent-heat storage system, is necessary. In this study, the performance of a panel type latent heat storage equipment during heat discharging process was analyzed theoretically and experimentally. In order to find out the performance of the system, computer simulation programs were developed by finite difference method. The governing equations were constructed by two dimensional heat conduction model with moving boundary. The results of the experimental and the theoretical analysis were reasonably well agreed. The efficiencies of the double pipe type and the panel type latent heat storage equipment were compared.

  • PDF

A Study on the Heat Exchange Performance for the Liquid Based Solar Thermal Storage (Liquid Based Solar Thermal Storage를 위한 열교환성능(熱交換性能)에 관한 연구(硏究))

  • Kim, Byung-Chul;Jung, Hyun-Chai
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.35-45
    • /
    • 1985
  • A solar hot water storage tank was designed and constructed to examine the heat exchange performances on load side for the solar thermal storage in a single loop solar water heating system. In the tank helically coiled tube was immersed. The hot water was circulated from either top or bottom. The circulation flow rate was varied from 500 ml/min to 20,000 ml/min. The effect of flow rate was observed. The thermal performances according to the flow rate and flow direction were examined. The temperature distributions in the tank and inside of the tubes were plotted along the process of cooling.

  • PDF

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - The Difference by the Presence of Radiant Heat as a Criterion Factor - (슬래브축열의 최적제어방책에 관한 연구 -평가요소로 복사열의 고려 유무에 의한 차이-)

  • Jung Jae-Hoon;Shin Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.287-296
    • /
    • 2006
  • In this paper, optimal control strategy of the air-conditioning system with slab thermal storage was investigated based on the optimal control theory. An optimal heat output to the plenum chamber and the air-conditioned room was determined based on two kinds of criterion functions. The first one requires small deviation in room air temperature from a set-point value and low energy consumption. It is shown that the optimized control is to store heat through the whole storage time and to increase storage rate gradually with time. As the second case, a criterion that both a deviation of operative temperature from a set-point temperature and the energy consumption should be minimized was adopted. The room air temperature was a little high and the cooling load during storage time was reduced, compared with the results when a criterion function considering only the room air temperature is used.