• Title/Summary/Keyword: thermal shock resistance

Search Result 173, Processing Time 0.029 seconds

Thermal Shock Resistance Property of TaC Added Ti(C,N)-Ni Cermets (TaC 첨가 Ti(C,N)-Ni 서멧의 내열충격 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.526-531
    • /
    • 2014
  • Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.

Study on the characteristics of acid resistance and thermal shock for epoxy coatings (에폭시계 코팅재의 내산열충격 특성에 관한 연구)

  • Lee, Sang-Yeal;Yun, Byoung-Du
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.4
    • /
    • pp.362-369
    • /
    • 2007
  • This paper was studied on the characteristics of acid resistance and thermal shock for epoxy coatings in the strong acidic environment. The exhaust gas system, such as a air preheater, desulfurization equipment, for industrial boiler is damaged by dew point corrosion. To protect the acid corrosion, the coating using nonmetal was applied. The electrochemical polarization test, acid resistance and thermal shock test for epoxy coatings were carried out. And the acid resistance and thermal shock characteristics, aspect, and electrochemical anti-corrosion characteristics for epoxy coatings in the strong acidic environment were considered. The main results are as followings: As the epoxy glass flake coating by acidic thermal shock was damaged to the crack, blistering and elution etc., the current density of epoxy glass flake coating is high. But the damage of epoxy metal complex coating by acidic thermal shock was not occurred. Therefore the characteristics of acid resistance and thermal shock for epoxy metal complex coating is better than those for epoxy glass flake coating.

Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres (중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구)

  • Yomin, Choi;Hyun‐Gyoo, Shin
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

Analysis of Thermal Shock in Tool Steels for Hot Forging (열간단조 금형강의 열충격특성연구)

  • Kim, J.W.;Kim, B.J.;Jo, I.S.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.155-159
    • /
    • 2001
  • The thermal shock resistance has been investigated and compared in three hot-work tool steels. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. In this study, new test method is proposed to measure the thermal shock resistance. New method is basically based on Uddeholm' thermal shock test but some modification has been properly applied. Based on these results, some critical temperature($T_{fractures}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. The specific values of ${\Delta}T$, the temperature difference between holding temperature and $T_{fractures}$, has been successfully used as a measure of the thermal shock resistance in this study, the results showed that the thermal shock method used in this study was properly modified.

  • PDF

Evaluation of thermal shock resistance and thermal shock fracture toughness using $CO_2$ laser for ATJ graphite (ATJ 그라파이트의 $CO_2$ 레이저를 이용한 열충격 강도 및 열충격 파괴인성 평가)

  • Kim, Jae-Hoon;Lee, Young-Sin;Park, No-Seok;Kim, Duk-Hoi;Han, Young-Wook;Seo, Jung;Kim, Jung-Oh
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The purpose of this study is to evaluate thermal shock resistance and thermal shock fracture toughness for ATJ graphite. Thermal shock resistance and thermal shock fracture toughness of ATJ graphite are evaluated by using CO$_2$ laser irradiation technique. The laser heat source is irradiated at the center of specimens. Temperature distribution on the specimen surface is measured using the thermocouples of type K and C. SEM and radiographic images are used to observe the cracks which are formed at the thermal shock specimens.

  • PDF

Analysis of Thermal Shock and Thermal Fatigue in Tool Steels for Hot Forging (열간단조 금형강의 열충격과 열피로 특성연구)

  • 김정운;문영훈;류재화;박형호
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2002
  • The thermal shock and thermal fatigue test has been carried out to analyze the thermal characteristics of tool steels for hot forging and the effects of mechanical properties on this study have been investigated. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. Based on these results, some critical temperature($T_{fracture}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. During thermal fatigue tests, the thermal fatigue cracks occur because of the repetitive heating and cooling of the die surface and the thermal fatigue damage was evaluated by analyzing different number of cycles to failure. The results showed that the resistance to thermal shock and thermal fatigue were found to be favoured by high hot tensile strength and high hot hardness, and thermal resistance of SKD61 was superior to that of ESC, SKT4 and this was caused by higher mechanical properties of SKD61.

Aluminium Titanate Sintering Study Aimed at Rational Design of Microstructure for Optimal Thermal Shock Characteristics

  • Alecu, Ioan D.;Stead, Rodney J.
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.78-81
    • /
    • 1999
  • Aluminium titanate is highly anisotropic in thermal expansion. As a result, thermal stresses build up in the material and intergranular cracks can develop. Both the outstanding thermal shock resistance and the low mechanical strength of aluminium titanate ceramics are a result of intergranular microcracking. The authors have previously identified a possibility of remarkably increasing fracture toughness of aluminium titanate without excessive penalty on strength. The paper shows that sintered density and porosity measurements can be used for optimizing the sintering and microstructure of aluminium titanate for an ideal balance between toughness and strength and, hence, the best thermal shock resistance.

  • PDF

Morphological Observation on Tribological Characteristic of Thermal Spray Coated Steel-Bar (용사 코팅된 스틸바의 트라이볼로지적 특성의 형상학적 관찰)

  • Lee, Duk Gyu;Cho, Hee Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.559-566
    • /
    • 2014
  • Plasma coatings have been conducted to improve the mechanical properties of thermal resistance, wear resistance, corrosion resistance and thermal shock with respect to Great-Bar which is used as a carrier device for ironstone sintering under $700^{\circ}C$. The surface coatings on the upper side of the Great-Bar exposed on extreme environments of high temperature, severe wear, corrosion and thermal shock extended the life time due to the barrier coating layer. $Al_2O_3$, $Cr_2O_3$, WC coatings were applied to Great-Bar and their mechanical and chemical properties are analyzed by several experimental tests such as thermal resistance, wear resistance, corrosion resistance and thermal shock resistance. It shows excellent advantages with respect to wear, thermal shock and corrosion.

A Study on Assessment Method of Crack Resistance and Thermal Shock Resistance in Hardfacing for Hot Forging Die (열간단조 금형 육성용접부 내균열성 및 내열충격성 평가방법에 관한 연구)

  • Cho, Sang-Myung;Kim, Sung-Ho;Jung, Yun-Ho;Baek, Seung-Hui;Jang, Jong-Hun;Park, Chul-Gyu;Woo, Hee-Chul;Jung, Byong-Ho
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • Hardfacing is one of the frequently applying method to increase surface hardness in hot forging die. Recently, hardfacing receives great attention due to it's repair availability and low cost. In hot forging die, crack resistance and thermal shock resistance have been considered as major properties, However there are few studies for the assessment of these properties. So, it is necessary to establish the assessment method for crack resistance and thermal shock resistance in hardfacing for hot forging die. In this study, flux cored arc welding was applied to make hardfacing welds. Three point bending test was carried out to assess hardfacing weld's crack resistance, and high temperature bending test using salt bath was developed for thermal shock resistance. Consequently, it was possible to assess crack resistance and thermal shock resistance of hardfacing welds for hot forging die quantitatively.

Evaluation of Mechanical Properties and Resistance to Thermal Shock of YBCO-Ag Superconductors (YBCO-Ag 초전도체의 기계적 성질 및 열충격 내성에 대한 평가)

  • 주진호
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • We have evaluated the role of Ag additions on the strength, fracture toughness, elastic modulus and resistance to thermal shock of $YBa_2Cu_3O_{7-x}$(YBCO) superconductor. Addition of 10 vol.% Ag improved strength and fracture toughness, whereas, decreased elastic modulus of YBCO. In addition, YBCO-Ag composites improved resistance to thermal shock probably due to enhanced strength, fracture toughness and thermal conductivity as a result of Ag addition. It is to be noted that YBCO-Ag made by mixing with $AgNO_3$ solution showed slightly higher strength, fracture toughness and resistance to thermal shock, compared to that made by mixing with metallic Ag powder. These improvements are believed to be due to the microstructure of more finely and uniformly distributed Ag particles.

  • PDF