• Title/Summary/Keyword: thermal shock

Search Result 714, Processing Time 0.031 seconds

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys

  • Shi, Ke;Huang, Bo;He, Bo;Xiao, Ye;Yang, Xiaoliang;Lian, Youyun;Liu, Xiang;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.190-197
    • /
    • 2019
  • W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.

Assessment of Voigt and LRVE models for thermal shock analysis of thin FGM blade: A neutral surface approach

  • Ankit Kumar;Shashank Pandey
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • The present work is an attempt to develop a simple and accurate finite element formulation for the assessment of thermal shock/thermally induced vibrations in pretwisted and tapered functionally graded material thin (FGM) blades obtained from Voigt and local representative volume elements (LRVE) homogenization models, based on neutral surface approach. The neutral surface of the FGM blade does not coincide with its mid-surface. A finite element model (FEM) is developed using first-order shear deformation theory (FSDT) and the FGM turbine blade is modelled according to the shallow shell theory. The top and the bottom layers of the FGM blade are made of pure ceramic and pure metal, respectively and temperature-dependent material properties are functionally graded in the thickness direction, the position of the neutral surface also depends on the temperature. The material properties are estimated according to two different homogenization models viz., Voigt or LRVE. The top layer of the FGM blade is subjected to high temperature and the bottom surface is either thermally insulated or kept at room temperature. The solution of the nonlinear profile of the temperature in the thickness direction is obtained from the Fourier law of heat conduction in the unsteady state. The results obtained from the present FEM are compared with the benchmark examples. Next, the effect of angle of twist, intensity of thermal shock, variable chord and span and volume fraction index on the transient response due to thermal shock obtained from the two homogenization models viz., Voigt and LRVE scheme is investigated. It is shown that there can be a significant difference in the transient response calculated by the two homogenization models for a particular set of material and geometric parameters.

NUMERICAL SIMULATION OF INITIAL FIREBALL AFTER NUCLEAR EXPLOSION (핵폭발 초기 화구에 대한 수치해석)

  • Song, Seungho;Lee, Changhoon;Choi, Jung-Il
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2014
  • We develop a numerical method for solving the radiation hydrodynamic equations in one-dimensional spherical coordinates. The present method is validated through simulations of shock tube, thermal radiative diffusion and point explosion problems. The transient growth of the fireball is investigated by varying explosion yields. The present study clearly captures well-known breakaway phenomena related to the shock separation between pressure waves and thermal shock front. The fireball radius at the breakaway point is roughly increased by the yield to power of 0.4.

Investigation of Supersonic Combustion within the Model Scramjet Engine by Shock Tunnel Test (충격파 터널시험을 통한 스크램제트 엔진의 초음속 연소현상연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.307-311
    • /
    • 2008
  • Ground test of model Scramjet engine was performed with T4 free-piston shock tunnel at University of Queensland, Australia. Test condition of free stream was Mach 7.6 at 31 km altitude. With this condition, variation effects of fuel equivalence ratio, cavity, cowl setting were investigated. In the results, supersonic combustion or thermal choking was observed depending on the amount of fuel. Cavity and W-shape cowl showed early ignition and enhanced mixing respectively.

  • PDF

Simulating astrophysical shocks with a combined PIC MHD code

  • van Marle, Allard Jan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2018
  • Astrophysical shocks accelerate particles to high velocities, which we observe as cosmic rays. The acceleration process changes the nature of the shock because the particles interact with the local magnetic field, removing energy and potentially triggering instabilities. In order to simulate this process, we need a computational method that can handle large scale structures while, at the same time, following the motion of individual particles. We achieve this by combining the grid magnetohydrodynamics (MHD) method with the particle-in-cell (PIC) approach. MHD can be used to simulate the thermal gas that forms the majority of the gas near the shock, while the PIC method allows us to model the interactions between the magnetic field and those particles that deviate from thermal equilibrium. Using this code, we simulate shocks at various sonic and Alfvenic Mach numbers in order to determine how the behaviour of the shock and the particles depends on local conditions.

  • PDF

Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

  • Han, Jiyoung;Kim, Kanghwa;Lee, Songmi
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.272-279
    • /
    • 2015
  • To screen molecular chaperones similar to small heat shock proteins (sHsps), but without ${\alpha}$-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an ${\alpha}$-crystalline domain, were purified. Among these proteins, only Snz1 showed the anti-aggregation activity against thermal denaturation of citrate synthase. However, pre-heating of NTF2 and Wos2 at $70^{\circ}C$ for 30 min, efficiently prevented thermal aggregation of citrate synthase. These results indicate that Snz1 and NTF2 possess molecular chaperone activity similar to sHsps, even though there is no ${\alpha}$-crystalline domain in their sequences.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • The attitude aerodynamic control is an important subject in the design of an aerospace plane. Usually, at high altitudes, this control is fulfilled by thrusters so that the implementation of an aerodynamic control of the vehicle has the advantage of reducing the amount of thrusters fuel to be loaded on board. In the present paper, the efficiency of a wing-flap has been evaluated considering a NACA 0010 airfoil with a trailing edge flap of length equal to 35% of the chord. Computational tests have been carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km, in the range of angle of attack 0-40 deg. and with flap deflection equal to 0, 15 and 30 deg.. Effects of the flap deflection have been quantified by the variations of the aerodynamic force and of the longitudinal moment. The shock wave-boundary layer interaction and the shock wave-shock wave interaction have been also considered. A possible interaction of the leading edge shock wave and of the shock wave arising from the vertex of the convex corner, produced on the lower surface of the airfoil when the flap is deflected, generates a shock wave whose intensity is stronger than those of the two interacting shock waves. This produces a consistent increment of pressure and heat flux on the lower surface of the flap, where a thermal protection system is required.

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting (연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향)

  • Yoon, Sanghyeon;Cho, Mun-Kyu;Jeong, Doo Hoa;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.