• Title/Summary/Keyword: thermal reflow

Search Result 92, Processing Time 0.022 seconds

Application of Stress Optimization for Preventing the Delamination of the Plastic IC Package in Reflow Soldering Process (리플로 납땜과정에서 플라스틱 IC 패키지의 박리방지를 위한 응력최적설계의 적용)

  • Kim, Geun-Woo;Lee, Kang-Yong;Kim, Ok-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.709-716
    • /
    • 2004
  • In order to prevent the interface delamination of an plastic IC package in the infrared (IR) soldering process, we tried to reduce stress by parameterization, sensitivity analysis and unconstraint optimization. The design variables of dimensions and material properties are determined among all the possible variables from the parametric study. Their optimized values are determined by applying the unconstraint optimization to the parameterized IC package. The maximum von-Mises stress value decreases greatly by optimum design.

Light extraction efficiency enhancement on organic light-emitting device by microlens array attachment: a systematic approach

  • Hsu, Sheng-Chih;Chen, Kuan-Yu;Lin, Hoang-Yan;Lee, Jiun-Haw;Lin, Chung-Yu;Wei, Mao-Kuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1819-1824
    • /
    • 2006
  • A microlens arrays formed by thermal reflow method is attached to an OLED device and the light extraction efficiency which includes luminance and power information is determined by adjusting the area ratio and the height ratio.

  • PDF

극미세 Bi-Sn 솔더 범프와 UBM과의 계면반응

  • Kang Un-Byoung;Kim Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.68-71
    • /
    • 2003
  • The reaction of ultra-small eutectic 58Bl-42Sn solder bump with Au/Ni/Ti and Au/Cu/Ti UBMs during reflow was studied. The eutectic Bi-Sn solder bumps of $46{\mu}m$ diameter were fabricated by using the evaporation method and were reflowed using the rapid thermal annealing system. The intermetallic compound was characterized using a SEM, an EDS, and an XRD. The $(Cu_xAu_{1-x})_6Sn_5$ compounds formed at the interface between Bi-Sn solder and Au/Cu/Ti UBM. On the other hand, in the Bi-Sn solder bump on Au/Ni/Ti UBM, the faceted and rectangular intermetallic compounds were observed on the solder bump surface and inside the solder bump as well as at the UBM interface. These intermetallic compounds were Identified as $(Au_{l-x-y}Bi_xNi_y)Sn_2$ phase.

  • PDF

The Optimization of the Organic Passivation Process in the TFT-LCD Panel for LCD Televisions

  • Lee, Yeong-Beom;Jun, Sahng-Ik
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.54-61
    • /
    • 2009
  • The results of the optimization of the organic passivation process for fabricating thin-film transistors (TFTs) with a high aperture ratio on a seventh-generation glass (2200${\times}$1870 mm) substrate for LCD-TV panels are reported herein. The optimization of the organic passivation process has been verified by checking various factors, including the material properties (e.g., thickness, stain, etching, thermal reflow) and the effects on the TFT operation (e.g., gate/data line delay and display-driving properties). The two main factors influencing the organic passivation process are the optimization of the final thickness of the organic passivation layer, and the gate electrode. In conclusion, the minimum possible final thickness was found to be $2.42{\um}m$ via simulation and pilot testing, using the full-factorial design. The optimization of the organic passivation layer was accomplished by improving its brightness by over 10 cd/$m^2$ (ca. 2% luminance) compared to that of the conventional organic passivation process. The results of this research also help reduce the reddish stain on display panels.

3D printed tactile pattern formation with thermal reflow method (3D 프린팅 기술과 표면 열처리 기술 기반의 3차원 촉각 형상 제작 기술 개발)

  • Jo, Won-Jin;Lee, Heon-Ju;Mun, Myeong-Un
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.172-173
    • /
    • 2015
  • 3D 프린터를 이용하면 짧은 시간에 복잡한 3차원 형상을 제작하는 것이 가능하며 적층하는 횟수를 조절하여 제작물의 크기와 모양, 두께를 쉽게 조절할 수 있다. 또한, 표면 열처리 기술을 적용하여 열로 표면을 처리하게 되면 매끄러운 표면 도출과 함께 외부 충격에 대한 내구성 및 접착력을 향상시킬 수 있다. 이러한 표면처리 기술은 촉각패턴과 표면과의 접착력의 제어가 가능하기 때문에 종이뿐만 아니라, 플라스틱, 금속, 세라믹 등 다양한 소재로 이루어진 표면에 적용이 가능하다. 따라서 본 연구에서 제안하는 3D 프린팅 기술과 표면 열처리 방식을 이용하면 기존의 점자 제작 방식을 개선할 수 있으며 기존 방법으로 표현하기 어려웠던 교과서 내에 삽입된 다양한 유물이나 동식물의 성장 과정 모델 등의 학습 자료를 입체적으로 만들 수 있다.

  • PDF

Fabrication of refractive PMMA microlens array using transparent acrylic resin (투명 아크릴 레진을 이용한 초소형 PMMA 렌즈 배열의 제작)

  • Ahn, Si-Hong;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3316-3318
    • /
    • 1999
  • PMMA(poly-methyl methacrylate) microlens array is fabricated using transparent acrylic resin. PMMA is commonly used material for plastic lens due to its excellent visibility larger than 90% and other optical characteristics so much close to those of glass. Orthodontic resin (DENTSPLY International Inc.), commonly used in dentistry, is an transparent acrylic resin kit including MMA liquid and polymerization powder. Their mixture results in PMMA through polymerization. Using the resin PMMA layer is formed on the substrate through spin-coating. Designed pattern of lens structure is transferred to PMMA layer by RIE (Reactive Ion Etching) with oxygen plasma. Final lens shape is formed by thermal treatment that causes PMMA to reflow, The thickness of PMMA spun on the substrate is $17{\mu}m$ that is also final sag of microlens, Designed diameters of the microlenses are $200{\mu}m$, $300{\mu}m$,and $500{\mu}m$, respectively.

  • PDF

Recent Progress of Hybrid Bonding and Packaging Technology for 3D Chip Integration (3D 칩 적층을 위한 하이브리드 본딩의 최근 기술 동향)

  • Chul Hwa Jung;Jae Pil Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.38-47
    • /
    • 2023
  • Three dimensional (3D) packaging is a next-generation packaging technology that vertically stacks chips such as memory devices. The necessity of 3D packaging is driven by the increasing demand for smaller, high-performance electronic devices (HPC, AI, HBM). Also, it facilitates innovative applications across another fields. With growing demand for high-performance devices, companies of semiconductor fields are trying advanced packaging techniques, including 2.5D and 3D packaging, MR-MUF, and hybrid bonding. These techniques are essential for achieving higher chip integration, but challenges in mass production and fine-pitch bump connectivity persist. Advanced bonding technologies are important for advancing the semiconductor industry. In this review, it was described 3D packaging technologies for chip integration including mass reflow, thermal compression bonding, laser assisted bonding, hybrid bonding.

  • PDF

(A Study on the Annealing Methods for the Formation of Shallow Junctions) (박막 접합 형성을 위한 열처리 방법에 관한 연구)

  • 한명석;김재영;이충근;홍신남
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • Low energy boron ions were implanted into the preamorphized and crystalline silicon substrates to form 0.2${\mu}m$ $p^+-n$ junctions. The rapid thermal annealing(RTA) was used to annihilate the crystal defects due to implantation and to activate the implanted boron ions, and the furnace annealing was employed to reflow the BPSG(bolo-phosphosilicate glass). The implantation conditions for Gepreamorphization were the energy of 45keV and the dose of 3$\times$1014cm-2. BF2 ions employed as a p-type dopant were implanted with the energy of 20keV and the dose of 2$\times$1015cm-2. The thermal conditions of RTA and furnace annealing were $1000^{\circ}C$/10sec and $850^{\circ}C$/40min, respectively. The junction depths were measured by SIMS and ASR techniques, and the 4-point probe was used to measure the sheet resistances. The electrical characteristics were analyzed via the leakage currents of the fabricated diodes. The single thermal processing with RTA produced shallow junctions of good qualities, and the thermal treatment sequence of furnace anneal and RTA yielded better junction characteristics than that of RTA and furnace anneal.

Improvement of Optical Characteristics in Viewing Directions in a Reflective Cholesteric Liquid Crystal Color Filter (반사형 콜레스테릭 칼라필터의 시야각에 따른 광특성 향상에 관한 연구)

  • Kim, Tae-Hyun;Lim, Young-Jin;Hwang, Seong-Jin;Lee, Myong-Hoon;Jang, Won-Gun;Lee, Seung-Hee
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.148-152
    • /
    • 2007
  • The prototype of color fitters for the liquid crystal displays (LCD) using cholesteric liquid crystal monomers was produced. Cholesteric liquid crystal is characterized by the unique optical features of selective reflection, which is due to the helical twisting structures of LCs comparable to the wavelength of the incident light under certain conditions of substrate treatment. In the results of the experiment, cholesteric films for red, green, and blue light reflections respectively were produced and the viewing angle dependence of these films were investigated. Reflective light of red and green films shifted to shorter wavelength regions as viewing angle becomes greater, but blue one shifted very little. Periodic micrometer-sized half-spherical photoresist formed by thermal reflow method after photo-lithography was patterned on glass substrates. The viewing angle dependence of reflective light colors of red, green, and blue films on the patterned substrates compared with those on no patterned substrates was investigated. We could confirm the dependences were much smaller on the patterned substrates by bare eyes and Lab-color coordination methods qualitatively.

Magnetic Induction Soldering Process for Mounting Electronic Components on Low Heat Resistance Substrate Materials (저 내열 기판소재 전자부품 실장을 위한 자기유도 솔더링)

  • Youngdo Kim;Jungsik Choi;Min-Su Kim;Dongjin Kim;Yong-Ho Ko;Myung-Jin Chung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • Due to the miniaturization and multifunctionality of electronic devices, a surface mount technology in the form of molded interconnect devices (MID), which directly forms electrodes and circuits on the plastic injection parts and mounts components and parts on them, is being introduced to overcome the limitations in the mounting area of electronic components. However, when using plastic injection parts with low thermal stability, there are difficulties in mounting components through the conventional reflow process. In this study, we developed a process that utilizes induction heating, which can selectively heat specific areas or materials, to melt solder and mount components without causing any thermal damage to the plastic. We designed the shape of an induction heating Cu coil that can concentrate the magnetic flux on the area to be heated, and verified the concentration of the magnetic flux and the degree of heating on the pad part through finite element method (FEM). LEDs, capacitors, resistors, and connectors were mounted on a polycarbonate substrate using induction heating to verify the mounting process, and their functionality was confirmed. We presented the applicability of a selective heating process through magnetic induction that can overcome the limitations of the reflow method.