• Title/Summary/Keyword: thermal probe

Search Result 336, Processing Time 0.044 seconds

Development of photothermal mirage technique for measuring thermal diffusivity (열확산도 측정을 위한 광열 신기루 기법 개발)

  • Kim, Dong-Sik;Choi, Sun-Rock;Lee, Joo-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1395-1400
    • /
    • 2003
  • This paper introduces a novel scheme for determining the thermal diffusivity of solids using the photothermal mirage technique. The suggested scheme extends the thermal-wave coupling method, employing the solution to the heat conduction equation in close proximity to the pump beam. Therefore, determination of thermal diffusivity is possible by detecting the mirage signal with small separation between the probe and pump beams, with enhanced intensity of the mirage signal. Though the method requires information about the probe-beam height, the absolute transverse position of the probe beam need not be known as it is automatically evaluated by the iterative-computation procedure. The thermal diffusivity of Ni is measured by the proposed scheme and the result demonstrates good agreement with the literature value to within 5 %.

  • PDF

Characteristics Analysis and Compensation of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석 보정)

  • 이재종;최대봉;박현구;곽성조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2001
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindel unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball arti-fact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

Optimization of Thermal Deformation in Probe Card (프로브 카드의 열변형 최적화)

  • Chang, Yong-Hoon;Yin, Jeong-Je;Suh, Yong-S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4121-4128
    • /
    • 2010
  • A probe card is used in testing semiconductor wafers. It must maintain a precise location tolerance for a fine pitch due to highly densified chips. However, high heat transferred from its lower chuck causes thermal deformations of the probe card. Vertical deformation due to the heat will bring contact problems to the pins in the probe card, while horizontal deformation will cause positional inaccuracies. Therefore, probe cards must be designed with proper materials and structures so that the thermal deformations are within allowable tolerances. In this paper, heat transfer analyses under realistic loading conditions are simulated using ANSYS$^{TM}$ finite element analysis program. Thermal deformations are calculated based on steady-state temperature gradients, and an optimal structure of the probe card is proposed by adjusting a set of relevant design parameters so that the deformations are minimized.

Thermal Property Evaluation of a Silicon Nitride Thin-Film Using the Dual-Wavelength Pump-Probe Technique (2파장 펌프-프로브 기법을 이용한 질화규소 박막의 열물성 평가)

  • Kim, Yun Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.547-552
    • /
    • 2019
  • In the present study, the thermal conductivity of a silicon nitride($Si_3N_4$) thin-film is evaluated using the dual-wavelength pump-probe technique. A 100-nm thick $Si_3N_4$ film is deposited on a silicon (100) wafer using the radio frequency plasma enhanced chemical vapor deposition technique and film structural characteristics are observed using the X-ray reflectivity technique. The film's thermal conductivity is measured using a pump-probe setup powered by a femtosecond laser system of which pump-beam wavelength is frequency-doubled using a beta barium borate crystal. A multilayer transient heat conduction equation is numerically solved to quantify the film property. A finite difference method based on the Crank-Nicolson scheme is employed for the computation so that the experimental data can be curve-fitted. Results show that the thermal conductivity value of the film is lower than that of its bulk status by an order of magnitude. This investigation offers an effective way to evaluate thermophysical properties of nanoscale ceramic and dielectric materials with high temporal and spatial resolutions.

Thermal Diffusivity Evaluation of Backfilling Materials for Horizontal Ground Heat Exchanger Using Single-Probe Method (단일 탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 산정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.356-364
    • /
    • 2011
  • Storage and transfer heat in soils is governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the evaluation results of the thermal diffusivity of soils (silica, quartzite, limestone, sandstone, granite, and two masonry soils used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities using single-probe method and (ii) use the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Combined algorithm with and improved model for the thermal conductivity of soils and the constituent equation provides accurate estimates of the soil thermal diffusivity.

The Development of Instantaneous Heat Flux Measurement Probe and Calculation of Thermal Stress of Piston by Finite Element Method (순간 열플럭스 측정용 프루브 개발 및 유한요소법에 의한 피스톤 열응력 계산)

  • Lee, J.S.;Woo, J.H.;Lee, E.L.;Jung, I.G.;Lee, H.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.267-275
    • /
    • 1998
  • In this study, the instantaneous heat flux measurement probe and the linkage system for the measurement of the instantaneous temperature and heat flux of the DI mono cylinder diesel engine were developed, and these were proved to have a good reliability and sensibility. A 3-D FEM model which consist of full piston to accommodate the eccentric bowl in the piston head, was applied for the analysis of the thermal stress and the temperature distribution. The mean heat flux on the piston head was used as boundary condition for the analysis of piston. The analysis showed that thermal stress concentrate on the bowl and inner surface of pin hall.

  • PDF

Measurement of the Volumetric Thermal Errors for CNC Machining Center Using the Star-type-styluses Tough Probe

  • Lee, Jae-Jong;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.111-117
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models the thermal errors for error analysis and develops an on-the-machine measurement system by which the volumetric errors are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments show that the developed system provides a high measuring accuracy, with repeatability of $\pm$2$\mu\textrm{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be also improved by using the developed measurement system when the spherical ball artifact is mounted on a modular fixture.

  • PDF

A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger (수직형 지중열교환기 열전도도 측정기술에 관한 연구)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

Fabrication and Characterization of Thermally Actuated Bimorph Probe for Living Cell Measurements with Experimental and Numerical Analysis

  • Cho Young-Hak;Kang Beom-Joon;Hong Seok-Kwan;Kang Jeong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.297-309
    • /
    • 2006
  • This paper deals with a novel structure for single-cell characterization which makes use of bimorph micro thermal actuators combined with electrical sensor device and integrated microfluidic channel. The goal for this device is to capture and characterize individual biocell. Quantitative and qualitative characteristics of bimorph thermal actuator were analyzed with finite element analysis methods. Furthermore, optimization for the dimension of cantilevers and integrated parallel probe systems with microfluidic channels is able to be realized through the virtual simulation for actuation and the practical fabrication of prototype of probes. The experimental value of probe deflection was in accordance with the simulated one.

Characteristics Analysis of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석)

  • 이재종;최대봉;박현구;곽성조;박홍석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.449-453
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF