Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.9.547

Thermal Property Evaluation of a Silicon Nitride Thin-Film Using the Dual-Wavelength Pump-Probe Technique  

Kim, Yun Young (School of Mechanical Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.9, 2019 , pp. 547-552 More about this Journal
Abstract
In the present study, the thermal conductivity of a silicon nitride($Si_3N_4$) thin-film is evaluated using the dual-wavelength pump-probe technique. A 100-nm thick $Si_3N_4$ film is deposited on a silicon (100) wafer using the radio frequency plasma enhanced chemical vapor deposition technique and film structural characteristics are observed using the X-ray reflectivity technique. The film's thermal conductivity is measured using a pump-probe setup powered by a femtosecond laser system of which pump-beam wavelength is frequency-doubled using a beta barium borate crystal. A multilayer transient heat conduction equation is numerically solved to quantify the film property. A finite difference method based on the Crank-Nicolson scheme is employed for the computation so that the experimental data can be curve-fitted. Results show that the thermal conductivity value of the film is lower than that of its bulk status by an order of magnitude. This investigation offers an effective way to evaluate thermophysical properties of nanoscale ceramic and dielectric materials with high temporal and spatial resolutions.
Keywords
silicon nitride; thin-film; thermal conductivity; femtosecond laser; pump-probe technique;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi and K. E. Goodson, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), p.1186 (2014).
2 N. Stojanovic, J. Yun, E. B. K. Washington, J. M. Berg, M. W. Holtz and H. Temkin, J. Microelectromech. Syst., 16, 1269 (2007).   DOI
3 P. Eriksson, J. Y. Andersson and G. Stemme, J. Microelectromech. Syst., 6, 55 (1997).   DOI
4 M. V. Arx, O. Paul and H. Baltes, J. Microelectromech. Syst., 9, 136 (2000).   DOI
5 J. Kuntner, A. Jachimowicz, F. Kohl and B. Jakoby, Proceedings of the Eurosensors '06 Conference, p.17 (2006).
6 S. M. Lee and D. G. Cahill, J. Appl. Phys., 81, 2590 (1997).   DOI
7 R. Sultan, A. D. Avery, G. Stiehl and B. L. Zink, J. Appl. Phys., 105, 043501 (2009).   DOI
8 J. Hong and S. E. Shim, Appl. Chem. Eng., 21, 115 (2010).
9 C. Dames, Ann. Rev. Heat Transfer, 16, 7 (2013).   DOI
10 J. E. Kim, K. D. Lee, Y. Kang, H. Lee and D. Kim, Korean J. Mater. Res., 26, 47 (2016).   DOI
11 B. Kim, J. Yun and J. Kim, Korean J. Mater. Res., 13, 606 (2003).   DOI
12 S. Shin, H. N. Cho, B. S. Kim and H. H. Cho, Thin Sol. Films, 517, 933 (2008).   DOI
13 Y. Y. Kim and S. Krishnaswamy, J. Korean Soc. Nondestruc. Test., 32, 115 (2012).   DOI
14 A. E. Kaloyeros, F. A. Jove, J. Goff and B. Arkles, ECS J. Solid State Sci. Technol., 6, 691 (2017).   DOI
15 H. Ftouni, C. Blanc, D. Tainoff, A. D. Fefferman, M. Defoort, K. J. Lulla, J. Richard, E. Collin and O. Bourgeois, Phys. Rev. B, 92, 125439 (2015).   DOI