• Title/Summary/Keyword: thermal power plants

Search Result 527, Processing Time 0.028 seconds

ANALYSIS OF HEAT TRANSFER ON SPENT FUEL DRY CASK DURING SHORT-TERM OPERATIONS (사용후핵연료 건식 용기의 단기운영공정 열전달 평가)

  • Kim, H.;Lee, D.G.;Kang, G.U.;Cho, C.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.54-61
    • /
    • 2016
  • When spent fuel assemblies from the reactor of nuclear power plants(NPPs) are transported, the assemblies are exposed to short-term operations that can affect the peak cladding temperature of spent fuel assemblies. Therefore, it needs to perform the analysis of heat transfer on spent fuel dry cask during the operation. For 3 dimensional computational fluid dynamnics(CFD) simulation, it is proposed that the short-term operation is divided into three processes: Wet, dry, and vacuum drying condition. The three processes have different heat transfer mode and medium. Metal transportation cask, which is Korea Radioactive Waste Agency(KORAD)'s developing cask, is evaluated by the methods proposed in this work. During working hours, the boiling at wet process does not occur in the cask and the peak cladding temperatures of all processes remain below $400^{\circ}C$. The maximum peak cladding temperature is $173.8^{\circ}C$ at vacuum drying process and the temperature rise of dry, and vacuum drying process occurs steeply.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Analysis of Material Response Based on Chaboche Unified Viscoplastic Constitutive Equation; (CHABOCHE 통합 점소성 구성방정식을 이용한 재료거동해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yu, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3516-3524
    • /
    • 1996
  • Service conditions for structures at elevated temperatures in nuclear power plant involve transient thermal and mechanical load levels that are severe enough to caeuse inelastic deformations due to creep and plasticity. Therefore, a systematic mehtod of inelastic analysis is needed for the design of structural components in nuclear poser plants subjected to such loading conditions. In the present investigation, the Chabodhe model, one of the unified viscoplastic constitutive equations, was selected for systematic inelastic analysis. The material response was integrated based on GMR ( generallized mid-point rule) time integral scheme and provided to ABAQUS as a material subroutine, UMAT program. By comparing results obtaned from uniaxial analysis using the developed UMAT program with those from Runge-Kutta solutions and experimentaiton, the validity of the adopted Chaboche model and the numerical stability and accuracy of the developed UMAT program were verified. In addition, the developed material subroutine was applied for uniaxial creep and tension analyses for the plate with a hole in the center. The application further demonstrates usefulness of the developed program.

An application of the electrostatic spray technology to increase scrubbing efficiency of SO$_{2}$ emitted from thermal systems (열시스템에서 생성된 SO$_{2}$ 가스의 배출저감을 위한 정전기 분무 원리의 응용)

  • Jeong, Jae-Yun;Byeon, Yeong-Cheol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1068-1076
    • /
    • 1997
  • Emission control of acid exhaust gases from coal-fired power plants and waste incinerators has become an increasing concern of both industries and regulators. Among those gaseous emissions, SO$_{2}$ has been eliminated by a Spray Drying Absorber (SDA) system, where the exhaust gas is mixed with atomized limestone-water slurry droplets and then the chemical reaction of SO$_{2}$ with alkaline components of the liquid feed forms sulfates. Liquid atomization is necessary because it maximizes the reaction efficiency by increasing the total surface area of the alkaline components. An experimental study was performed with a laboratory scale SDA to investigate whether the scrubbing efficiency for SO$_{2}$ reduction increased or not with the application of a DC electric field to the limestone-water slurry. For a selected experimental condition SO$_{2}$ concentrations exited from the reactor were measured with various applied voltages and liquid flow rates. The applied voltage varied from -10 to 10 kV by 1 kV, and the volume flow rate of slurry was set to 15, 25, 35 ml/min which were within the range of emission mode. Consequently, the SO$_{2}$ scrubbing efficiency increased with increasing the applied voltage but was independent of the polarity of the applied voltage. For the electrical and flow conditions considered a theoretical study of estimating average size and charge of the atomized droplets was carried out based on the measured current-voltage characteristics. The droplet charge to mass ratio increased and the droplet diameter decreased as the strength of the applied voltage increased.

Influence of Fly Ash Addition on Properties of Ceramic Wall Tiles (플라이애시 첨가에 따른 세라믹 벽타일 소지의 물성변화)

  • Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2017
  • Recently, there have been many efforts to establish suitable processes for recycling fly ash, which is produced in thermal power plants and which poses serious environmental problems. Use of fly ash as a major ingredient of ceramic tiles can increase fly ash utilization, as well as reduce the cost of raw materials in ceramic tile production. In this study, the effects of fly ash addition on ceramic tile properties such as bending strength, water absorption and porosity were investigated. A manufacturing process of ceramic tile was developed for utilization of fly ash with high carbon content. In this approach, it is important to hold the ceramic tiles at a temperature that is sufficient for carbon oxidation, before the pores supplying oxygen to the inside of the ceramic tile are sealed. Ceramic wall tiles were manufactured with 0-40wt% of fly ash addition. The water absorption and porosity of the fired body were slightly changed with increasing fly ash content up to 30wt% and decreased with greater amounts of fly ash addition. The bending strength of ceramic tile including 10wt% fly ash increased, reaching a level comparable to that of ceramic tile without fly ash.

Alloy Design and Properties of Ni based Superalloy LESS 1: I. Alloy Design and Phase Stability at High Temperature (Ni기 초내열 합금 LESS 1의 합금설계 및 평가: I. 합금 설계 및 고온 상 안정성 평가)

  • Youn, Jeong Il;Kang, Byung Il;Choi, Bong Jae;Kim, Young Jig
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.215-225
    • /
    • 2013
  • The alloys required for fossil power plants are altered from stainless steel that has been used below $600^{\circ}C$ to Ni-based alloys that can operate at $700^{\circ}C$ for Hyper Super Critical (HSC) steam turbine. The IN740 alloy (Special Metals Co. USA) is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at about $700^{\circ}C$ indicated the formation of the eta phase with the wasting of a gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys, and this resulted in the formation of precipitation free zones to decrease the strength. On the basis of thermodynamic calculation, the new Ni-based superalloy named LESS 1 (Low Eta Sigma Superalloy) was designed in this study to improve the strengthening effect and structure stability by depressing the formation of topologically close packed phases, especially sigma and eta phases at high temperature. A thermal exposure test was carried out to determine the microstructure stability of LESS 1 in comparison with IN740 at $800^{\circ}C$ for 300 hrs. The experimental results show that a needle-shaped eta phase was formed in the grin boundary and it grew to intragrain, and a precipitation free zone was also observed in IN740, but these defects were entirely controlled in LESS 1.

Synthesis of Zeolite Using Discharged Fly Ash in an Industrial Complex in Ulsan (울산지역 공단에서 발생되는 비산재를 이용한 제올라이트 합성)

  • Lee, Chang-Han;Park, Jong-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.301-306
    • /
    • 2011
  • In this study, zeolite was synthesized by hydrothermal, fusion, and fusion/hydrothermal methods with fly ash, coal fly ash, and a waste catalyst discharged from thermal power plants and incinerator in Ulsan area. Coal fly ashes (CFAs) and a waste catalyst containing amounts of $SiO_2$ and $Al_2O_3$ ranging from 60.29 to 89.62 wt%. CFAs were mainly composed of quartz and mullite which were assayed by a XRD pattern. Zeolite could be synthesized by CFAs and the waste catalyst when all methods were used. Na-A zeolite (Z-C1, Z-C2, and Z-W5) are mainly synthesized by the fusion method from CFAs and the waste catalyst. Z-C1 and Z-C2 formed by-products, calcite peaks, which is caused by the content of CaO in CFAs and the addition of $Na_2CO_3$ for a synthetic process.

Feasibility Study on the Use of CFBC Ash as Non-sintered Binder (순환유동층 보일러애시를 활용한 비소성 결합재로써의 활용 가능성 검토)

  • Kang, Yong Hak;Lim, Gwi Hwan;Kim, Sang Jun;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.119-126
    • /
    • 2018
  • Recently, the production of circulating fluidized bed combustion ash has been increased in thermal power plants. The addition of limestone for the desulfurizing effect of circulating fluidized bed boiler ash increases the content of CaO and $SO_3$ contained in ash, which is higher than the free fly ash in general fly ash. Unlike conventional fly ash, the circulating fluidized bed combustion ash has a high reactivity when it comes into contact with water due to its hydraulic properties and high free-CaO content. The aim of this study is to investigate the possibility of non-sintered binder by using self-cementing properties of circulating fluidized bed combustion ash. The mechanical and hydration characteristics were investigated according to the content of CFBC ash. In addition, the effects of gymsum type and content on the compressive strength and micro-structure of non-sintered binder pastes.

Water-Splitting and Highly Active Catalysts Technology for CO2 Reduction (물 분해와 CO2 환원을 위한 고활성 촉매기술)

  • Chung, Pyung Jin
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.30-50
    • /
    • 2017
  • Currently, exhaust gas emitted from thermal power plants and various combustion facilities that consume large amounts of fossil fuels such as coal, oil, and natural gas contains high concentrations of $CO_2$ and is a major cause of global warming. Conventionally, as a countermeasure against this problem, research and development are being carried out from various fields, and it is considered to be one of the most promising methods for separating and recovering $CO_2$ in the exhaust gas. One of the reasons for the low use of carbon dioxide is oxidized among the carbon compounds and is present in the most stable state. From the viewpoint of $CO_2$ emissions, $CO_2$ immobilization technology, which converts $CO_2$ into chemically useful compounds, is considered to be more important.