• Title/Summary/Keyword: thermal noise method

Search Result 168, Processing Time 0.026 seconds

Investigation of the existing thermal noise theories for field-effect transistors using the monte-carlo method and the generalized ramo-shockley theorem (Monte-carlo 방법과 일반화된 ramo-shockley 정리를 통한 FET 열잡음 이론의 검증)

  • 모경구;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.107-114
    • /
    • 1996
  • Monte carlo method is especially a useful method for the analysis of thermal noise of semiconductor devices since the time dependence of microscopic details is simulated directly. Recently, a mthod for the calculation of the instantaneous currents of 2-dimensional devices, which is numerically more accurate than the conventional method, has been proposed using the generalized ramo-shockley theorem. Using this mehtod we investage the validity of the existing thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise theories of field-effect transistors. First, the 1-dimensional analysis of thermal noise using ramo-shockley theorem is shown to be applicable to 2 dimensional devices if the frequency of interest is low enough. The correlation between electrons in different regions of th echannel is shown not to be negligible. And we also obtian the spatial map of the noise in the channel region. By doing so, we show that the steady state nyquist theorem is the correct theory rather than the theory by van der ziel et.al.

  • PDF

Analytical Thermal Noise Model of Deep-submicron MOSFETs

  • Shin, Hyung-Cheol;Kim, Se-Young;Jeon, Jong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.206-209
    • /
    • 2006
  • This paper presents an analytical noise model for the drain thermal noise, the induced gate noise, and their correlation coefficient in deep-submicron MOSFETs, which is valid in both linear region and saturation region. The impedance field method was used to calculate the external drain thermal noise current. The effect of channel length modulation was included in the analytical equation. The noise behavior of MOSFETs with decreasing channel length was successfully predicted from our model.

A Study on Intrinsic Noise of Capacitively Coupled Active Electrode (용량성 결합 능동 전극의 내부 잡음 분석)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • The indirect-contact ECG measurement is a newly developed method for unconstrained and nonconscious measurement in daily Life. This study is the first step to reducing the large background noise appearing in indirect-contact ECG. This study built the thermal noise model of capacitively coupled active electrode which is used in indirect-contact ECG. The results show that the level of thermal noise estimated by the thermal noise model is much the same as that of actual background noise for the capacitively coupled active electrode alone. By applying the actual electrical properties of a sample cotton cloth to the thermal noise model, the theoretical level of thermal noise in the indirect-contact ECG was estimated. The results also show that the level of op-amp's intrinsic noise is so small that it can be negligible in comparison with thermal noise of resistors. The relationship between the level of thermal noise and the resistance of the bias resistor was derived, and it is the base for the further study how to choice the optimal resistance for the bias resistor.

Effects of Noise on Indoor Thermal Sensation and Comfort (소음이 실내 온열감과 온열쾌적감에 미치는 영향)

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Purpose: Thermal sensation or thermal comfort was randomly used in many studies which focused on combined effects of thermal and acoustic environments on human perception. However, thermal sensation and thermal comfort are not synonyms. Thermal comfort is more complex human perception on thermal environment than thermal sensation. This study aims to investigate effects of noise on thermal sensation and thermal comfort separately, and also to investigate effects of temperature on acoustic sensation and comfort. Method: Combined thermal and acoustic configurations were simulated in an indoor environmental chamber. Twenty four participants were exposed to two types of noise (fan and babble) with two noise levels (45 dBA and 60 dBA) for an hour in each thermal condition of PMV-1.53, 0.03, 1.53, 1.83, respectively. Temperature sensation, temperature preference, thermal comfort, noisiness, loudness, annoyance, acoustic comfort, indoor environmental comfort were evaluated in each combined environmental condition. Result: Noise did not affected thermal sensation, but thermal comfort significantly. Temperature had an effect on acoustic comfort significantly, but no effect on noisiness and loudness in overall data analysis. More explicit interactions between thermal condition and noise perception showed only with the noise level of 60 dBA. Impacts of both thermal comfort and acoustic comfort on the indoor environmental comfort were analyzed. In adverse thermal environments, thermal comfort had more impact than acoustic comfort on indoor environmental comfort, and in neutral thermal environments, acoustic comfort had more important than thermal comfort.

Degradation Estimation Of Material by Barkhausen Noise Analysis (바크하우젠 노이즈 해석에 의한 재료의 열화도 평가)

  • Lee Myung Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • The destructive method is reliable and widely used for the estimation of material degradation but it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. In this study, various nondestructive evaluation(NDE) parameters of the Barkhausen noise method, such as MPA(Maximum Peak Amplitude), RMS, IABNS(Internal Area of Barkhausen Noise on Signal) and average amplitude of frequency spectrum are investigated and correlated with thermal damage level of 2.25cr-1.0Mo steel using wavelet analysis. Those parameters tend to increase while thermal degradation proceeds. It also turns out that the wavelet technique can help to reduce experimental false call in data analysis.

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

Reduction of contraction and expansion noise of refrigerator using thermal deformation analysis (열변형 해석을 이용한 냉장고 수축팽창 소음저감)

  • Park, Seong-Kyu;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.344-351
    • /
    • 2019
  • In this work, the mechanism of contraction and expansion noise generation is investigated, and effective methods are proposed to reduce the occurrence frequency of noise during operation of the refrigerator. First, the frequency spectrum analysis was made by using the sound pressure signal measured in an anechoic chamber to investigate the characteristic of noise and the frequency of occurrence. Second, a thermal deformation analysis was conducted to predict the location of noise source. It is found from the analysis that the biggest thermal deformation occurs in the middle of the left inner case in the freezer room. Following the investigation made, a noise reduction method is proposed. The method is proposed to reduce the contraction and expansion noise by reducing the thermal deformation through increasing ABS (Acrylonitrile Butadiene Styrene) thickness in the center of refrigerator.

Performance analysis of FH/CPFSK system with the error-correcting code and the diversity under rayleigh fading channel with the thermal noise and the partial-band noise jamming (열잡음과 부분대역재밍이 존재하는 레일레이 페이딩 채널에서 오류정정부호와 다이버시티를 고려한 FH/CPFSK 시스템의 성능분석)

  • 곽진규;박진수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1787-1802
    • /
    • 1996
  • In this paper, the performance for FH/CPFSK system with limiter-discriminator detection and integrage-and-dump post-detection filtering under thermal noie, partial-band noise jamming and rayleigh fading have been analyzed. The method of hard-decision diversity of which the transmitter repeated L times on different hops for each data symbol in a way to mutigate the effects of the jamming has been applied, and the receiver has been combined the L chips. Also, error-correcting code have been applied for improving performance of system. The thermal noise and partial-band noise jamming, intersymbol interference for all eight of the possible adjacent bit data patterns, and FM noise click for evaluating systems have been considered. Also optimum parameters to improve performance of FH/CPFSK system have been obtained and validities have been proved through computer simulation.

  • PDF

Analysis and extraction method of noise parameters for short channel MOSFET thermal noise modeling (단채널 MOSFET의 열잡음 모델링을 위한 잡음 파라메터의 분석과 추출방법)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2655-2661
    • /
    • 2009
  • In this paper, an accurate noise parameters for thermal noise modeling of short channel MOSFET is derived and extracted. Fukui model for calculating the noise parameters of a MOSFET is modified by considering effects of parasitic elements in short channel, and it is compared with conventional noise model equation. In addition, for obtaining the intrinsic noise sources of devices, noise parameters(minimum noise figure $F_{min}$, equivalent noise resistance $R_n$ optimized source admittance $Y_{opt}=G_{opt}+B_{opt}$) in submicron MOSFETs is extracted. With this extraction method, the intrinsic noise parameters of MOSFET without effects of probe pad and extrinsic parasitic elements from RF noise measurements can be directly obtained.

Responsivity and Noise Evaluation of Infrared Thermal Imaging Camera (적외선열화상카메라의 응답 및 노이즈 특성 평가)

  • Kim, Dong-Ik;Kim, Ghiseok;Kim, Geon-Hee;Chang, Ki Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.342-348
    • /
    • 2013
  • In this paper, the evaluation method for the responsivity and noise characteristics of an infrared thermal imaging camera was presented. Signal transfer function and noise equivalent temperature difference of the infrared thermal imaging camera were obtained by using a differential mode blackbody that is able to control the temperature difference ${\Delta}$T between an infrared target and its background. And we verified the suitability of our evaluation method through comparison between the found noise equivalent temperature difference and the specification of the camera. In addition, the difference of 0.01 K of the two noise equivalent temperature differences calculated from with and without nonuniformity correction suggests that the nonuniformity correction is essential process for the evaluation of the infrared thermal imaging camera.