DOI QR코드

DOI QR Code

Responsivity and Noise Evaluation of Infrared Thermal Imaging Camera

적외선열화상카메라의 응답 및 노이즈 특성 평가

  • Kim, Dong-Ik (Center for Analytical Instrumentation Development, Korea Basic Science Institute) ;
  • Kim, Ghiseok (Center for Analytical Instrumentation Development, Korea Basic Science Institute) ;
  • Kim, Geon-Hee (Center for Analytical Instrumentation Development, Korea Basic Science Institute) ;
  • Chang, Ki Soo (Center for Analytical Instrumentation Development, Korea Basic Science Institute)
  • 김동익 (한국기초과학지원연구원 첨단장비개발사업단) ;
  • 김기석 (한국기초과학지원연구원 첨단장비개발사업단) ;
  • 김건희 (한국기초과학지원연구원 첨단장비개발사업단) ;
  • 장기수 (한국기초과학지원연구원 첨단장비개발사업단)
  • Received : 2013.06.24
  • Accepted : 2013.08.21
  • Published : 2013.08.30

Abstract

In this paper, the evaluation method for the responsivity and noise characteristics of an infrared thermal imaging camera was presented. Signal transfer function and noise equivalent temperature difference of the infrared thermal imaging camera were obtained by using a differential mode blackbody that is able to control the temperature difference ${\Delta}$T between an infrared target and its background. And we verified the suitability of our evaluation method through comparison between the found noise equivalent temperature difference and the specification of the camera. In addition, the difference of 0.01 K of the two noise equivalent temperature differences calculated from with and without nonuniformity correction suggests that the nonuniformity correction is essential process for the evaluation of the infrared thermal imaging camera.

본 논문에서는 비접촉 비파괴검사에 사용되는 적외선열화상카메라의 응답 및 노이즈 특성을 평가할 수 있는 방법을 제시하고 있으며 차동모드흑체의 적외선 표적과 그 주변의 온도차 ${\Delta}$T를 이용하여 상용 적외선열화상카메라의 신호전달함수 및 온도분해능을 구하고 그 결과를 카메라 사양과 비교함으로써 본 평가 방법의 적합성을 검증하였다. 또한 비균일성 보정의 적용 유무로부터 나타나는 온도분해능의 차이 0.01 K을 통하여 적외선열화상카메라의 성능평가에 있어서 비균일성 보정이 필수적인 과정임을 확인하였다.

Keywords

References

  1. L. Becker, "Influence of IR sensor technology on the military and civil defense," Proc. of SPIE, Vol. 6127, pp. 61270S-1-61270S-15 (2006)
  2. B. C. Arrue, A. Ollero and J. R. Martinez, "An intelligent system for false alarm reduction in infrared forest-fire detection," IEEE Intelligent Systems, pp. 64-73 (2000)
  3. C. Meola, G. M. Carlomagno, A. Squillace and G. Giorleo, "The use of infrared thermography for nondestructive evaluation of joints," Infrared Physics & Technology, Vol. 46, pp. 93-99 (2004) https://doi.org/10.1016/j.infrared.2004.03.013
  4. O. Breitenstein, J. P. Rakotoniaina and M. H. Al Rifai, "Quantitative evaluation of shunts in solar cells by lock-in thermography," Prog. Photovolt: Res. Appl. Vol. 11, pp. 515-526 (2003) https://doi.org/10.1002/pip.520
  5. O. Breitenstein and M. Langenkamp, "Microscopic lock-in thermography investiga- tion of leakage sites in tegrated circuits," Rev. Sci. Instrum., Vol. 71, pp. 4155-4160 (2000) https://doi.org/10.1063/1.1310345
  6. N. P. Avdelidis, B. C. Hawtin, and D. P. Almond, "Transient thermography in the assessment of defects of aircraft composites," NDT&E International, Vol. 36, pp. 433-439 (2003) https://doi.org/10.1016/S0963-8695(03)00052-5
  7. F. J. Madruga, D. A. Gonzalez, J. M. Mirapeix and J. M. Lopez Higuera, "Application of infrared thermography to the fabrication process of nuclear fuel containers," NDT&E International, Vol. 38, pp. 397-401 (2005) https://doi.org/10.1016/j.ndteint.2004.11.002
  8. P. A. Bell and C. W. Hoover, "Standard NETD test procedure for FLIR systems with video outputs," Proc. of SPIE, Vol. 1969, pp. 194-205 (1993)
  9. J. G. Harris and Y. Chiang, "Nonuniformity correction of infrared image sequence using the constant-statistics constraint," IEEE Transactions on Image Processing, Vol. 8, pp. 1148-1151 (1999) https://doi.org/10.1109/83.777098

Cited by

  1. Development of a MTF Measurement System for an Infrared Optical System vol.26, pp.3, 2015, https://doi.org/10.3807/KJOP.2015.26.3.162
  2. Thermal Resolution Analysis of Lock-in Infrared Microscope vol.35, pp.1, 2015, https://doi.org/10.7779/JKSNT.2015.35.1.12