• Title/Summary/Keyword: thermal insulation, thermal performance and comfort

Search Result 18, Processing Time 0.023 seconds

Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions

  • Mohamed Zemzem;Stephane Halle;Ludwig Vinches
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.107-117
    • /
    • 2023
  • Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40℃, 30℃), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.

Evaluation of the Indoor Thermal Comfort in Naturally Ventilated Apartment During Summer (자연환기가 가능한 서울시 공동주택의 하절기 실내 온열 쾌적성 평가)

  • Lee, Seung-Jae;Cheong, Chang Heon;Hwang, Suckho;Kim, Taeyeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • Natural ventilation is major strategy of 'sustainable building'. It aims to supply fresh air to the indoor, and to remove heat from the indoor during summer. In the latter point of view, natural ventilation can be grouped into two main strategies, daytime ventilation and night cooing. If we take advantage of these two natural ventilation strategies, indoor thermal comfort can be significantly improved. This study focused on grasping the current situation and problem of indoor thermal comfort of the naturally ventilated residential buildings to seek for direction of later studies. Additionally, thermal comfort of residence where the interior blind and exterior insulation were applied was analyzed. It was analyzed that the percentage of the time which satisfy the indoor acceptable operative temperature during summer was 90 ~ 95% and the heat control performance of natural ventilation has a limitation. When the interior blind and exterior insulation were applied, indoor thermal comfort was significantly improved. However, it still need more improvement.

Development of Firefighters' Personal Protective Clothing with Nomex Honeycomb Fabric and its Protective and Comfort Evaluation (노멕스 허니콤 구조 직물을 적용한 소방관용 특수방화복 개발 및 이의 보호 쾌적 성능평가)

  • Jung, Jae-Yeon;Ku, Ponjun;Kim, Do Hyung;Kwon, Min-Jae;Kang, Sungwook;Choi, Jeong-Yoon;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.21 no.5
    • /
    • pp.606-617
    • /
    • 2019
  • The present study newly developed a firefighters' protective jacket and pants using a Nomex honeycomb structured layer (HPC) in cases of being exposed to flashover or flameover. This study evaluated the protective and comfort functions of an HPC compared to the current KFI firefighters' protective clothing (FPC). The results are as follows. First, thermal protective performance (TPP) of fabric layers was 2.75 times greater for HPC than FPC at $125kW/m^2$. Second, the predicted second and third degree burn areas were smaller for HPC than FPC when using a flame manikin. Third, thermal insulation using a thermal manikin was 0.2 clo greater for HPC than FPC. Fourth, there were no marked differences in maximal performance, mobility, and microclimate temperature/humidity between FPC and HPC through human wear trials. The thermal insulation of HPC was higher than that of FPC; however, any negative effect of HPC thermal insulation on the comfort functions for firefighters was not found. In conclusion, the newly-developed HPC provided more protection in reducing burn injuries from $125kW/m^2$, while no negative impact on maximal performance, mobility and thermal comfort functions of firefighters, which is appropriate for quick-evasive tactics at the flashover, flameover or back draft fires.

A Comparative Study on the Thermal Performance Changes by the Insulating Construction Types of Exterior Walls in Residential Buildings (주거용(住居用) 건물(建物) 외벽(外壁)의 단열공법별(斷熱工法別) 열성능(熱性能) 변동(變動)에 관한 비교(比較) 연구(硏究))

  • Kim, Moon-Han;Cho, Kyun-Hyong;Kim, Kwang-Woo
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.22-32
    • /
    • 1988
  • It is known that the energy consumption and indoor thermal comfort in residential buildings are affected by the thermal performance of building envelopes. The thermal performance of building envelopes varies with their design methods. In this study, the thermal performance changes by the insulating construction types of exterior walls were analyzed, 1) by varing the thickness of the insulation 2) by varing the location of the insulation 3) by varing the location of the plane airspace The analyzed results are presented and the thermal performance evaluating factors were compared and discussed.

  • PDF

Thermal Comfort Aspects of Pesticide-protective Clothing Made with Nonwoven Fabrics

  • Choi Jong-Myoung;Tanabe Shin-Ichi
    • International Journal of Human Ecology
    • /
    • v.3 no.1
    • /
    • pp.55-72
    • /
    • 2002
  • The purpose of this study was to evaluate the thermal resistance of pesticideprotective clothing and to investigate its subjective wear performance. Three different nonwoven fabrics, which provide barrier properties against water and pesticide, were used to manufacture the experimental clothing: spunbonded nonwoven (SB), spunbonded/meltblown/spunbonded nonwoven (SM), and spunlaced nonwoven (SL). The thermal insulation values of the experimental clothing were measured with a thermal manikin, and other wear trials were performed on human subjects in a climate chamber at $28^{\circ}C$, with 70% R.H. and air movement at less than 0.15m/s. Our results found that the thermal resistance was lower in the SB experimental clothing than in the others; that the mean skin temperature of subjects who wore the experimental clothing made with SL was significantly lower than that of subjects who wore the SB and SM clothing; and that the microclimate temperature and humidity with SB were significantly higher than that of the others. Overall, the experimental clothing made with SL was more comfortable than the others in terms of subjective wear sensations.

An Evaluation of Factors Influencing the Thermal Insulation and Evaporative Resistance of a Waterproof and Breathable Garment System (투습방수의류의 보온력 및 증발저항 평가와 관련 변인)

  • Shim, Huen sup
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.4
    • /
    • pp.549-556
    • /
    • 2014
  • This study evaluates the thermal insulation and evaporative resistance of a waterproof and breathable garment system and determines the factors influencing its thermal performance. The experimental garments were composed of underwear (shirts with 100% wool and 100% polyester) and outerwear (jackets and pants with a vapor-permeable membrane and a vapor-impermeable membrane). Data on clothing insulation in a dry condition ($10^{\circ}C$) and a wet condition ($10^{\circ}C$, 40% R.H.), evaporative resistance ($34^{\circ}C$, 40% R.H., and $10^{\circ}C$, 40% R.H.), and microclimate vapor pressure were collected and analyzed. According to the results, the thermal insulation of the experimental garment system ranged 1.27~1.40 in the dry condition and 0.40~0.89 in the wet condition at $10^{\circ}C$. Evaporative resistance ranged $41{\sim}525m^2Pa/W$. A decrease in thermal insulation by wetting underwear ranged 31~67% in the cold condition ($10^{\circ}C$). The breathability of the outer garment influenced the decrease in thermal insulation by wetting. The type of underwear fiber influenced the decrease in thermal insulation only when it was used with breathable outerwear. The vapor-permeable outerwear sample with polyester underwear (P_Perm) showed a larger decrease in insulation than that with wool (W_Perm). The evaporative resistance of the vapor-permeable ensemble showed no effect of underwear in the warm condition ($34^{\circ}C$), but polyester underwear showed lower evaporative resistance than wool in the cold condition ($10^{\circ}C$). The vapor-impermeable ensemble showed no difference in evaporative resistance between polyester underwear and wool underwear in both conditions. Future research should consider various clothing ensemble combinations and environmental conditions and evaluate wear comfort by using human subjects.

Thermal Comfort and Tactile Wearing Performance of Wool/nylon Fabrics for Tra-biz Garment (울/나일론 tra-biz 의류용 직물 소재의 열적 쾌적성과 착용특성)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • In this study, wool/nylon(50/50%) blend yarn and its fabrics for tra-biz(complex word of travel+business) garment were prepared, and its wear comfort characteristics were investigated through thermal manikin and human-body wearing experiment. In addition, tactile wearing performance from fabric mechanical properties and the dimensional stability and the pilling of the fabric specimen during wearing and dry-cleaning were measured and compared with those of wool 100% fabric specimen. Heat keepability of the wool/nylon(50/50%) blend fabric by thermal manikin experiment was superior than that of wool 100% fabric, this result was verified with human-body wearing experiment and its result coincided well with this experimental result. Tactile wearing performance of the wool/nylon(50/50%) fabric from fabric mechanical properties measured by FAST system was better than that of the wool 100% fabric. The dimensional stability of the wool/nylon(50/50%) fabric was more stable than that of the wool 100% fabric. Because relaxation shrinkage was lower and hygral expansion of wool 100% fabric was more high. However, the breathability and pilling property of the wool/nylon(50/50%) fabric were inferior than those of the wool 100% fabric. The possibility of application for tra-biz garment of wool/nylon(50/50%) blend fabric was observed because of good heat keepability, tactile wearing performance and washing fastness.

A study on the analytical method for calculating the inside air temperature transient and energy consumption load of the building using two different controllers (두개의 제어기를 사용한 건물 내부의 온도변화와 에너지소비량을 계산하기 위한 해석적 연구)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Four different buildings having various wall construction are analyzed for the effect of wall mass on the thermal performance and inside building air and wall temperature transient and also for calculating the energy consumption load. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equations is obtained using the Laplace transform method, Bromwich and modified Bromwich contour method. A simple dynamic model using steady state analysis as simplified methods is developed and results of energy consumption loads are compared with results obtained using the analytical solution. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from two different locations in Korea: Daegu having severe weather in summer and winter and Jeju having mild weather almost all year round. There is a significant wall mass effect on the thermal performance of a building in mild weather condition. Buildings of heavyweight construction with insulation show the highest comfort level in mild weather condition. A proportional controller provides the higher comfort level in comparison with buildings using on-off controller. The steady state analysis gives an accurate estimate of energy load for all types of construction. Finally, it appears that both mass and wall insulation are important factors in the thermal performance of buildings, but their relative merits should be decided in each building by a strict analysis of the building layout, weather conditions and site condition.

Evaluation of Comfort Performance for Modernized Hanok: Targeting Hanok Residence at the Jamjeong-Haetsal Village in Hwasun, Jeonnam Province (신한옥의 쾌적성능 평가: 전남 화순 잠정햇살마을 한옥단지를 대상으로)

  • Choe, Seung-Ju;Lee, Mihyang;Kim, Jae-Hyang;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • With increasing interest in living in hanoks, there's a growing need for more quantitative data on the thermal comfort performance of modern hanoks. With that in mind, this research project studied a modern hanok located in Jamjeong-Haetsal Village in Hwasun, Jeollanam Province as a case study to evaluate the Predicted Mean Vote (PMV) of modernized hanoks. Based on environmental data collected at the hanok and computer simulation both Life-Cycle PMV (L.C.PMV) and Normal PMV (N.PMV) were calculated for the hanok. Study results showed that during the summer and winter seasons the PMV and heat index at major heat and major cold weather points significantly deviated from the comfort zone. The rate of change in PMV was also greater in the winter than in the summer. The study found that the modern hanok lacks proper thermal insulation for maintaining thermal comfort.

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.