• Title/Summary/Keyword: thermal humidity

Search Result 642, Processing Time 0.024 seconds

Novel Sulfonated Poly(arylene ether sulfone) Composite Membranes Containing Tetraethyl Orthosilicate (TEOS) for PEMFC Applications (고분자 전해질형 연료전지를 위한 TEOS가 함유된 술폰화 폴리아릴렌에테르술폰 복합막의 제조 및 특성)

  • Lee, Keun-Kyu;Kim, Tae-Ho;Hwang, Taek-Sung;Hong, Young-Taik
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.278-289
    • /
    • 2010
  • A series of composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) were prepared via addition of tetraethyl orthosilicate (TEOS) and solution casting method. The morphological structure, water uptake, proton conductivity of the resulting composite membranes were extensively investigated as function of the content of TEOS. By the sol-gel reaction, TEOS molecules were not completely converted to $SiO_2$ particles, but formed only oligomer-type. Also, EDS confirms that the resulting silicon dioxide was homogeneously distributed in the composite membranes. As the content of TEOS increased, the prepared membranes increased water uptake and proton conductivity at high temperature and low relative humidity condition. In particular, considerably high proton conductivity (0.015 S/cm) at $120^{\circ}C$ and 48%RH was demonstrated in the composite membrane containing 200% TEOS, which is 10 times greater than that of unmodified SPAES membrane. Also, the composite membranes were found to have enhanced thermal stability compared to the unmodified membrane.

Numerical Simulation of Local Circulation Over the Daechung Lake Area by Using the Mesoscale Model (중규모 수치 모델을 이용한 대청 호수 주변의 국지 순환 모의)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Beom-Keun
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.464-477
    • /
    • 2009
  • In this study, we examined the patterns of local circulation over the Daechung lake area through the numerical experiment designed to investigate the impact of lake on the local circulation. The results of numerical experiment showed that the surface temperature predicted by WRF model was lower than the observation, while the wind speed was stronger than the observation. The local circulation over the lake area was characterized by a lake breeze induced by a horizontal thermal contrast between the lake surface and the Surrounding land. At Daecheong Lake, a lake breeze formed at 09 LST and dissipated at 18 LST, with maximum intensity at 15 LST. The vertical extent of the simulated circulation was about 1,200 m. The specific humidity increased as the humid air above the lake moved landward due to the daytime circulation of the lake breeze. The numerical experiments of sensitivity to existence of the lake showed that the simulated surface temperature decreased in the experiment with the lake. Wind speed was more intense around the lake area when the actual land use was substituted by grassland land use. The results of numerical experiments suggest that the lake-induced lake breeze circulation has an effect on the meteorology of planetary boundary layer around the lake.

Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube (Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석)

  • Seo, Yong Soo;Lee, Jea Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.244-252
    • /
    • 2010
  • The objective of this study is to assess feasibility of simultaneous analysis for trace multi-components odorous and volatile organic compounds using a Triple-bed adsorbent tube with a thermal desorber and GC-MS. Triple-bed adsorbent tube is 3 bed packed Tenax-TA with small amount of Carbopack B and Carbosieve SIII in order of adsorption strength in a tube. The operating conditions of GC-MS was possibly able to and effectively detect high volatile and low molecular weight compounds at the mass range of 20~350 m/z using a below impurity 1ppm of Helium carrier gas, of which quantitatively analyzed by target ion extracts. According to the experiment, $C_1{\sim}C_5$ of 14 components; sulfur containing compounds(2), ketones(2), alcohols(4) and aldehydes(6) were simultaneously analyzed with recoveries of 99%, and good repeatability and linearity. High volatile and low molecular weight compounds such as methyl alcohol and acetaldehyde can be safely quantified with high recovery at a condition of 50mL/min of flow rate, below 2L of adsorption volume, and 45% of relative humidity. Target ion extract can also simultaneously quantify multicomponents with odorous and volatile organic compounds in an occasion of piled up two peaks.

THE EFFECT OF FLOWABLE RESIN LINING ON THE MARGINAL MICROLEAKAGE OF CONDENSABLE RESIN RESTORATION (응축형 복합레진 수복시 유동성 레진 이장이 변연부 미세누출에 미치는 영향)

  • 문주훈;고근호
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • The purpose of this study was to evaluate the marginal microleakage of condensable composite resin restorations according to flowable resin lining of internal cavity wall. The eighty extracted human molar teeth without caries and/or restorations are used The experimental teeth were randomly assigned into four groups of ten teeth each. Eighty caries-free extracted human molars were used in this study. The conventional class II cavities (box-shaped on mesial and distal surface, faciolingual width : 3mm, gingival wall depth : 1.5mm) were prepared 1mm below cementoenamel junction with a # 701 carbide bur. The teeth were divided into four groups, and then each group were subdivided into A & B group according to flowable resin & compomer lining ; Group 1-A : Tetric Ceram filling, Group 1-B : Tetric Flow lining and Tetric Ceram filling, Group 2-A Ariston pHc filling, Group 2-B : Tetric Flow lining and Ariston pHc filing, Group 3-A SureFil filling, Group 3-B : Dyract Flow lining and SureFil filling, Group 4-A : Pyramid filling, Group 4-B : Aeliteflo lining and Pyramid filling. To simulate as closely as possible the clinical situation during retoration placement, a "restoration template" was fabricated, and the condensable resin was filled using a three-sited light-curing incremental technique. All the materials used were applied according to the manufacturers' instructions. The specimens were stored in the 100% humidity for 7 days prior to thermocycling (100 thermal cycles of 5~55$^{\circ}C$ water with a 30-second dwell time) The specimens were immersed in 2% metyleneblue dye for 24 hours, and then embedded in transparent acrylic resin and sectioned mesiodistally with diamond wheel saw. The degree of marginal leakage was scored under stereomicroscope ($\times$20) and the data were analyzed by Kruskal-Wallis test and Wilcoxon signed ranks test. The results were as follows : 1. In the gingival margins of all the group, microleakage of subgroup B was less than subgroup A. 2. In the group 1, 2, 4, there was significant differences between subgroup A and B (p<0.05), but in the group 3, there was not significant different between group 3-A (SureFil) and group 3-B (Dyract flow/SureFil) (p>0.05). 3. In the subgroup A and B, there was significant different between all group except group 4 of subgroup A. From the results above, it was suggested that the cavity lining of flowable resin and flowable compomer in condensable resin restoration decrease microleakage at gingival margin, and does improve their ability to seal the gingival margin of class II preparation.

  • PDF

Thermal and Ventilative Characteristics of Single-Span Oak Mushroom Production Facility as Affected by Area of Roof Opening and Shading Rates (단동 표고재배시설의 천창면적과 차광율에 따른 온도 및 환기특성)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.120-126
    • /
    • 2000
  • The quality of oak mushoom(Lentinus edodes(Berk) Sing) is sensitively affected by environmental factors, especially moisture by the rain during the growing period. To protect mushrooms from being wet, plastic-covered facilities with side openings are mostly being used. However, the indoor temperature and humidity f the facility without roof opening become higher due to its poor ventilation, and consequently reduce the productivity and quality as well. In this study, we analyzed the ventilation rates and indoor temperatures of improved facilities as affected by the area of roof opening and shading rate by the model. The indoor temperature decreased by more than 2.5$^{\circ}C$ as the shading rate increased from 50% to 90%, and especially the effect of wind speed on indoor temperature was significantly great under as low as 50% of shading rate. The ventilation rate became higher under wind speed of 1~2m.s-1 regardless of the shading rate. As the wind speed increased from 0m.s-1 to 2m.s-1, the indoor temperature decreased by more than 2.$0^{\circ}C$. Moreover, the indoor temperature became lower with increasing roof opening ratio, but showed no significant differences at more than 50% of roof opening ratio. At lower shading rate, the indoor temperature sensitively decreased with increasing area of roof opening. Additionally, we obtained the higher ventilation performance with the area of roof opening more or less equal to side opening, regardless of the wind speed and shading rate.

  • PDF

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene (NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구)

  • Jang, Young Hee;Noh, Young Il;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

An Experimental Study for the Effect of Operating Condition of the Air Handling Unit on the Performance of Humidifying Elements (공조기 운전 조건이 가습 소자의 성능에 미치는 영향에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.326-331
    • /
    • 2018
  • Evaporative humidification using a humidifying element is used widely for the humidification of a building or a data center. The performance of a humidifying element is commonly expressed as the humidification efficiency, which is assumed to be independent of the air temperature or humidity. To verify this assumption, a series of tests were conducted under two air conditions - data center ($25^{\circ}C$ DBT, $15^{\circ}C$ WBT) and commercial building ($35^{\circ}C$ DBT, $21^{\circ}C$ WBT) - using humidifying elements made from cellulose/PET and changing the frontal air velocity from 1.0 m/s to 4.5 m/s. Three samples having a 100 mm, 200 mm, or 300 mm depth were tested. The results showed that the humidification efficiency is dependent on the air condition. Indeed, even dehumidification occurred at the inlet of the humidifying element at the air condition of commercial building. This suggests that a proper thermal model should account for the inlet area, where the amount of moisture transfer may be different from the other part of the humidification element. As the depth of the element increased from 100 mm to 200 mm, the humidification efficiency increased by 29%. With further increases to 300 mm, it increased by 42%. On the other hand, the pressure drop also increased by 47% and 86%.

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.