DOI QR코드

DOI QR Code

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023

Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구

  • Taehyun, Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Chan-Hee, Park (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Changsoo, Lee (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jin-Seop, Kim (Korea Atomic Energy Research Institute (KAERI))
  • Received : 2022.12.09
  • Accepted : 2022.12.13
  • Published : 2022.12.31

Abstract

In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.

DECOVALEX-2023 Task C에서는 6개국 9개 참여 기관들이 스위스 Mont Terri 지하처분연구시설에 서 수행된 FE 실험을 대상으로 열-수리-역학 복합거동 모사를 위한 해석코드 개발을 수행하고 있다. 현재 현장시험 결과와 비교 분석을 위한 Step 1이 진행되고 있으며, 본 연구진은 OGS-FLAC 해석 시뮬레이터를 활용하여 일련의 해석을 진행하였다. 해석 결과 히터 가열에 따른 온도 상승이 잘 구현되었고, 상 변화에 따른 완충재 내 포화도 변화를 관측할 수 있었다. 반면 완충재 흡입력의 과대평가로 완충재 내 상대습도, 온도 변화 및 Opalinus 점토암 내 압력 변화가 현장 결과와 다소간 차이를 나타내는 것을 확인하였다. 이를 통해 완충재 흡입력이 처분시스템 해석 시 유동 해석 결과에 지배적인 영향을 미침을 확인할수 있었으며, 향후 지보재 및 초기 수압 모사 개선을 통해 향상된 결과를 도출하고자 한다. 또한, Opalinus 점토암의 열, 수리, 역학적 이방성이 잘 구현되었으며 해석 결과를 통해 OGS-FLAC 시뮬레이터의 처분시스템 해석 적용성을 확인하였다.

Keywords

Acknowledgement

The authors appreciate and thank the DECOVALEX-2023 Funding Organisations Andra, BASE, BGE, BGR, CAS, CNSC, COVRA, US DOE, ENRESA, ENSI, JAEA, KAERI, NWMO, RWM, SURAO, SSM and Taipower for their financial and technical support of the work described in this paper. The statements made in the paper are, however, solely those of the authors and do not necessarily reflect those of the Funding Organisations. This research was also supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (2021M2E1A1085193) and the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM, GP2020-010) funded by the Ministry of Science and ICT, Korea.

References

  1. Alonso, E.E., Alcoverro, J. et al., and Jussila, P., 2005, The FEBEX benchmark test: case definition and comparison of modelling approaches, International Journal of Rock Mechanics and Mining Sciences, 42, 611-638.  https://doi.org/10.1016/j.ijrmms.2005.03.004
  2. Beaucaire, C., Tertre, E., Ferrage, E., Grenut, B., Pronier S., and Made, B., 2012, A thermodynamic model for the prediction of pore water composition of clayey rock at 25 and 80°C comparison with results from hydrothermal alteration experiments, Chemical Geology, 334, 62-76.  https://doi.org/10.1016/j.chemgeo.2012.09.040
  3. Birkholzer, J.T., Tsang, C.-F., Bond, A.E., Hudson, J.A., Jing L., and Stephansson, O., 2019, 25 years of DECOVALEX- Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes, International Journal of Rock Mechanics and Mining Sciences, 122, 103995.  https://doi.org/10.1016/j.ijrmms.2019.03.015
  4. ENRESA, 2000, FEBEX project. Full-scale Engineered Barriers Experiment for a Deep Geological Repository for High Level Radioactive Waste in Crystalline Host Rock. Madrid: Final report.
  5. Graupner, B. and Thatcher, K., 2020, Task C THM modelling of the FE experiment (Presentation material), DECOVALEX-2023 1st workshop.
  6. Itasca, 2013, FLAC3D (version 5.0) Online manual.
  7. Kim, T., Lee, C., Kim, J.-W., Kang, S., Kwon, S., Kim, K.-I., Park, J.-W., Park C.-H., and Kim, J.-S., 2021a, Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste, Tunnel and Underground Space, 31(3), 167-183. https://doi.org/10.7474/TUS.2021.31.3.167
  8. Kim, T., Park , C.-H., Lee C., and Kim, J.-S., 2021b, A numerical study on the Step 0 benchmark test in Task C of DECOVALEX-2023: Simulation for thermo-hydro-mechanical coupled behavior by using OGS-FLAC, Tunnel and Underground Space, 31(6), 610-622.
  9. Kim, T., Park, C.-H., Watanabe, N., Park, E.-S., Park, J.-W., Jung, Y.-B., and Kolditz, O., 2021c, Numerical modeling of two-phase flow in deformable porous media: application to CO2 injection analysis in the Otway Basin, Australia, Environmental Earth Sciences, 80(121), 1-15.
  10. Kolditz, O, Bauer, S., Bilke, L., Bottcher, N., Delfs, J.O., Fischer, T., Gorke, U.J., Kalbacher, T., Kosakowski, G., McDermott C. et al., 2012, Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (thm/c) processes in porous media, Environmental Earth Sciences, 67(2), 589-599. https://doi.org/10.1007/s12665-012-1546-x
  11. Kwon, S., Cho W.-J., and Choi, J.-W., 2007, Status of the international cooperation project, DECOVALEX for THM coupling analysis, Journal of the Korean Radioactive Waste Society, 5(4), 323-338.
  12. Lee, C., Choi, H.-J., and Kim, G.-Y., 2020a, Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland, Tunnel and Underground Space, 30(3), 242-255. https://doi.org/10.7474/TUS.2020.30.3.242
  13. Lee, C., Kim, T., Lee, J., Park, J.-W., Kwon S., and Kim, J.-S., 2020b, Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019, Tunnel and Underground Space, 30(4), 271-305. https://doi.org/10.7474/TUS.2020.30.4.271
  14. Nagra, 2019, Implementation of the Full-scale Emplacement experiment at Mont Terri: Design, construction and preliminary results, Technical report 15-02, National Cooperative for the Disposal of Radioactive Waste, 202p.
  15. Park, C.-H., Kim, T., Park, E.-S., Jung Y.-B., and Bang, E.-S., 2019, Development and Verification of OGSFLAC Simulator for Hydro-mechanical Coupled Analysis: Single-phase Fluid Flow Analysis, Tunnel and Underground Space, 29(6), 468-479. https://doi.org/10.7474/TUS.2019.29.6.468
  16. Park, C.-H., Kim, T., Park, E.-S., Jung Y.-B., and Bang, E.-S., 2020, Construction of open-source program platform for efficient numerical analysis andits case study, Tunnel and Underground Space, 30(6), 509-518. https://doi.org/10.7474/TUS.2020.30.6.509
  17. Park, D. and Park, C.-H., 2022, Performance evaluation of OGS-FLAC simulator for coupled thermal-hydrological-mechanical analysis, Tunnel and Underground Space, 32(2), 144-159. https://doi.org/10.7474/TUS.2022.32.2.144
  18. Rutqvist, J., Borgesson, L. et al. and Tsang, C.-F., 2001, Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine - comparison of field results to predictions of four finite element codes, International Journal of Rock Mechanics and Mining Sciences, 38, 129-142. https://doi.org/10.1016/S1365-1609(00)00069-1
  19. van Genuchten, M.T., 1980, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x