• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.028 seconds

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

An Experimental Study on Thermal Characteristics between Cooling Fluid and Ice Ball during Charging and Discharging Precesses (빙축 및 냉방열과정중 냉각유체와 Ice Ball사이의 열적 특성에 관한 실험적 연구)

  • 박경원;박이동;황영규;김윤제
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.193-205
    • /
    • 1996
  • This paper deals with experimental study on thermal characteristics that a cooling fluid is affected to ice ball as being measuring the temperature in storage tank and ice ball governing the rate of heat storage. Distributor was taken as inlet geometry factor. flow rate of cooling fluid which was a brine were 2, 4, and 6LPM, and 8, 10, and 12$^{\circ}C$ in the temperature difference for dynamic factors with respect to three ice ball types(103, 96, 76mm). In case of in flowing cooling fluid, since inertia force is suppressed by lower flow rate the amount of heat was transferred to ice ball by heat conduction high because density difference is high. And in case of larger ice ball, a long-term storage was available because reaching time at steady state is relatively long. consequently, smaller ice ball could be suitable to a short-term storage.

  • PDF

The growth of superlattice IGZO thin films using ZnO buffer layer grown by thermal atomic layer deposition

  • Jo, Seong-Un;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.162-163
    • /
    • 2013
  • Single-crystal InGaZnO (IGZO) thin films were spontaneously formed as periodic layered structure along the c-axis by thermal treatment at high temperature. when the IGZO superlattice were synthesized by sol-gel method, the effects of preferred growth orientations and the flatness of ZnO buffer layer were investigated. $InGaO_3(ZnO)_2$ superlattice were favorably formed on ZnO buffer layer with single preferred orientation. Futhermore, it showed relatively high Seebeck coefficient and power factor.

  • PDF

Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive (HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각방법에 따른 열간단조 금형의 수명 평가)

  • 김병민;김동환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.23-26
    • /
    • 2003
  • This paper explains the die cooling method for improving tool life in the hot forging process. In continuous forming operation such as hot forging process, performed at high speeds, temperature increases of several hundred degrees may be involved. Die hardness was reduced due to thermal softening. Factor of die fracture are wear and plastic deformation of die due to hardness reduction by high temperature. Because die service life was reduced due to this phenomenon during hot forging, quantified data for optimal die cooling method is required. The new developed techniques for predicting tool life applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process

  • PDF

Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System (소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

A survey on the reason for low acceptability and proposal for its improvement for protective clothing in pesticide applicators (농약살포자의 방제복 미착용 요인 및 착용감 개선 방안 고찰)

  • You, Kyung-Sook
    • Korean Journal of Human Ecology
    • /
    • v.13 no.5
    • /
    • pp.777-785
    • /
    • 2004
  • We intend to analyze reasons for low acceptability of protective clothing in pesticide-spraying farmers in Korea, and to use the information for designing new clothing with better acceptability. To understand the attitude of farmers toward wearing protective clothing during spray, a survey was performed on 256 farmers. It is evident that the stress, which is caused by inadequate body temperature regulation, and its accompanying physiological responses are two of the leading factors for the low acceptability of protective clothing. Although the cost of clothing is not an important factor currently, low cost clothing is desirable in the future. Fancy of design is unimportant for new clothing. The results are discussed in conjunction with a desirable research focus for new types of protective clothing. Efforts should be made to ameliorate thermal stress through protective material development and garment design.

  • PDF

Thermal Contact Resistance of Two Bodies in Contact (접촉하는 두 물체 사이의 접촉 열저항)

  • Kwak Hong Sup;Jeong Jae Tack
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.66-72
    • /
    • 2004
  • 전도 열전달 분야에서 두 물체가 접해 있는 경우, 접촉 열저항은 고려해야 할 중요한 요소이다. 특히 최근에는 전자부품의 과열방지를 위한 열 소산과 관련하여 접촉 열저항 문제는 중요하게 대두되고 있으며 이에 관련한 많은 이론적 연구와 응용연구가 수행되고 있다. 접촉 열저항은 주로 거친 두 물체표면의 불완전접촉에 기인한다. 본 연구에서는, 접촉하는 두 물체사이의 접촉면을 이상화시킨 비교적 간단한 문제를 이론적으로 해석함으로써 접촉면의 틈새 형상 및 비접촉면적비(비접촉면적/외관접촉면적)의 크기에 따른 접촉 열저항의 크기를 구하였다.

Analysis of IPMSM Temperature Characteristics based on Stator Design Parameters (600W급 IPMSM의 고정자 설계 변수 변화에 따른 온도 특성 분석 및 고찰)

  • Go, Duk-Hwa;Kim, Yong-Tae;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1201-1206
    • /
    • 2017
  • In this paper, the temperature characteristics by change the width of teeth and yoke in the stat or parameters were analyzed. An initial model of fill factor 45 [%] was produced. Through the experiment, the validity of the temperature analysis using the thermal equivalent circuit method was verified. So, initial model was selected as basic model. Also, temperature characteristic analysis was performed for each width change of the stator teeth and yoke, and the effects of the width of stator teeth and yoke on the temperature characteristics were analyzed.

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.