• Title/Summary/Keyword: thermal electric

Search Result 1,754, Processing Time 0.024 seconds

Numerical Simulation far the Non-Spherical Aggregation of Charged Particles (하전 입자의 비구형 응집 성장에 대한 수치적 연구)

  • Park, Hyeong-Ho;Kim, Sang-Su;Jang, Hyeok-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.227-237
    • /
    • 2002
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that the electric charges accumulated on an aggregate were located on its center of mass, and aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. In the simulation, the fractal dimension for the uncharged aggregate was D$\_$f/ = 1.761. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states. In the bipolar charge state, the average sizes of aggregates were larger than that of the uncharged state in the early and middle stages of aggregation process, but were almost the same as the case of the uncharged state in the final stage. On the other hand, in the unipolar charge state, the average size of aggregates and the dispersion of particle volume decreased with the increasing of the charge quantities.

A Study of Thermal Performance for Lever Type CO Micro Gas Sensor (레버형 CO 마이크로 가스센서의 열적성능에 관한 연구)

  • Joo, Young-Cheol;Im, Jun-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.325-330
    • /
    • 2005
  • A lever type CO micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material, $SnO_2$, to a target temperature, a micro heater was built on the gas sensor. The heater and electrodes were hanged on the air as a bridge type to minimize the heat loss to the silicon base. The sensing material laid on the heater and electrodes and did not contact with the silicons base. The temperature distribution of micro gas sensor was analyzed by a CFD program, FLUENT. The results showed that the temperature of silicon wafer base was almost similar to that of the room temperature, which indicates that the heat generated at the micro heater heated up effectively the sensing material. The required electric current of micro heater to heat up the sensing material to the target temperature could be predicted.

  • PDF

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.

Development of Environmental Control System for High-Quality Shiitake Mushroom (Lentinus edodes (Berk.) Sing.) Production

  • Kwon, Jin-Kyung;Kim, Seung-Hee;Jeon, Jong-Gil;Kang, Youn-Ku;Jang, Kab-Yeol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.342-351
    • /
    • 2018
  • Purpose: Recently, an increasing number of farms have been cultivating shiitake mushrooms using a sawdust substrate and a cooler/heater. In this study, an attempt was made to develop an environmental control system using a heat pump for cultivating high-quality shiitake mushrooms. Methods: An environmental control system, consisting of an air-to-water type heat pump, a thermal storage tank, and a radiator in a variable opening chamber, was designed and fabricated. The system was also installed in the cultivation facility of a farm cultivating shiitake mushrooms so as to compare the proposed control system with a conventional environmental control system using a cooler-condensing unit and an electric hot water boiler. Results: The uniformity of the environment was analyzed through environment measurements taken at several positions inside the cultivation facility. It was determined that the developed environmental control system is able to control the variations in temperature and relative humidity to within 1% and 3%, respectively. In addition, a maximum temperature difference of $30^{\circ}C$ (maximum of $35^{\circ}C$, minimum of $5^{\circ}C$) and a maximum relative humidity difference of 30% (maximum of 90%, minimum of 60%) can be attained within 30 min inside the cultivation facility through the cooling of the heat pump and heating of the radiator in a variable opening chamber. Thus, the developed control system can be used to cultivate high-quality shiitake mushrooms more effectively than a conventional cooler and heater. Conclusions: In comparison with a conventional environmental control system, the developed system decreased the yield of ordinary mushrooms by 65%, and increased that of high-quality mushrooms by 217%. This corresponds to a 16% increase in gross farm income. Consequently, the developed system is expected to improve the income of shiitake mushroom cultivating farms.

Recycling of Copper Scrap (동스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.3-14
    • /
    • 2019
  • Copper is one of the first metals utilized by humankind about 11,500 years ago. But copper is not plentiful metallic element in the earth's crust. Copper has a high thermal and electric conductivity and is relatively corrosion resistant. In principle copper is virtually 100 % recyclable as an element without loss of quality. The recycling of copper scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. Currently, approximately 30% of the global copper supply provides by recycling. Copper scrap is smelted in primary and secondary smelter. Type of furnace and process steps depend on the quality and grade of scrap. Depending on copper content of the secondary raw material, refining is required, which is usually done through electrorefining. This work provides an overview of the primary copper production and recycling process.

Development of Optimum Design Method for Geothermal Performance based on Energy Simulation (지열 성능해석 시뮬레이션에 기반한 최적 설계 수법 개발)

  • Moon, Hyeongjin;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.43-48
    • /
    • 2019
  • Since the revision of the Rationalization of Energy Use Law, the spread of new and renewable energy in buildings has been promoted. In addition, the production of electric power and thermal energy is an important issue in the change of energy paradigm centered on the use of distributed energy. Among them, geothermal energy is attracting attention as a high-performance energy-saving technology capable of coping with heating / cooling and hot water load by utilizing the constant temperature zone of the earth. However, there is a disadvantage that the initial investment cost is high as a method of calculating the capacity of a geothermal facility by calculating the maximum load. The disadvantages of these disadvantages are that the geothermal energy supply is getting stagnant and the design of the geothermal system needs to be supplemented. In this study, optimization design of geothermal system was carried out using optimization tool. As a result of the optimization, the ground heat exchanger decreased by 30.8%, the capacity of the heat pump decreased by 7.7%, and the capacity of the heat storage tank decreased by about 40%. The simulation was performed by applying the optimized value to the program and confirmed that it corresponds to the load of the building. We also confirmed that all of the constraints used in the optimization design were satisfied. The initial investment cost of the optimized geothermal system is about 18.6% lower than the initial investment cost.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Environmental test campaign of a 6U CubeSat Test Platform equipped with an ambipolar plasma thruster

  • Stesina, Fabrizio;Corpino, Sabrina;Borras, Eduard Bosch;Amo, Jose Gonzalez Del;Pavarin, Daniele;Bellomo, Nicolas;Trezzolani, Fabio
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.195-215
    • /
    • 2022
  • The increasing interest in CubeSat platforms ant their capability of enlarging the frontier of possible missions impose technology improvements. Miniaturized electrical propulsion (EP) systems enable new mission for multi-unit CubeSats (6U+). While electric propulsion systems have achieved important level of knowledge at equipment level, the investigation of the mutual impact between EP system and CubeSat technology at system level can provide a decisive improvement for both the technologies. The interaction between CubeSat and EP system should be assessed in terms of electromagnetic emissions (both radiated and conducted), thermal gradients, high electrical power management, surface chemical deposition, and quick and reliable data exchanges. This paper shows how a versatile CubeSat Test Platform (CTP), together with standardized procedures and specialized facilities enable the acquisition fundamental and unprecedented information. Measurements can be taken both by specific ground support equipment placed inside the vacuum facility and by dedicated sensors and subsystems installed on the CTP, providing a completely new set of data never obtained before. CTP is constituted of a 6U primary structure hosting the EP system, representative CubeSat avionics and batteries. For the first test campaign, CTP hosts the ambipolar plasma propulsion system, called Regulus and developed by T4I. After the integration and the functional test in laboratory environment, CTP + Regulus performed a Test campaign in relevant environment in the vacuum chamber at CISAS, University of Padua. This paper is focused on the test campaign description and the main results achieved at different power levels for different duration of the firings.

Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries (리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향)

  • Ha, Seongmin;Kim, Daesup;Kwak, Cheol Hwan;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.343-351
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.