Browse > Article
http://dx.doi.org/10.12989/aas.2022.9.3.195

Environmental test campaign of a 6U CubeSat Test Platform equipped with an ambipolar plasma thruster  

Stesina, Fabrizio (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Corpino, Sabrina (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Borras, Eduard Bosch (European Space Agency (ESA), ESTEC)
Amo, Jose Gonzalez Del (European Space Agency (ESA), ESTEC)
Pavarin, Daniele (Technology for Innovation (T4I))
Bellomo, Nicolas (Technology for Innovation (T4I))
Trezzolani, Fabio (Technology for Innovation (T4I))
Publication Information
Advances in aircraft and spacecraft science / v.9, no.3, 2022 , pp. 195-215 More about this Journal
Abstract
The increasing interest in CubeSat platforms ant their capability of enlarging the frontier of possible missions impose technology improvements. Miniaturized electrical propulsion (EP) systems enable new mission for multi-unit CubeSats (6U+). While electric propulsion systems have achieved important level of knowledge at equipment level, the investigation of the mutual impact between EP system and CubeSat technology at system level can provide a decisive improvement for both the technologies. The interaction between CubeSat and EP system should be assessed in terms of electromagnetic emissions (both radiated and conducted), thermal gradients, high electrical power management, surface chemical deposition, and quick and reliable data exchanges. This paper shows how a versatile CubeSat Test Platform (CTP), together with standardized procedures and specialized facilities enable the acquisition fundamental and unprecedented information. Measurements can be taken both by specific ground support equipment placed inside the vacuum facility and by dedicated sensors and subsystems installed on the CTP, providing a completely new set of data never obtained before. CTP is constituted of a 6U primary structure hosting the EP system, representative CubeSat avionics and batteries. For the first test campaign, CTP hosts the ambipolar plasma propulsion system, called Regulus and developed by T4I. After the integration and the functional test in laboratory environment, CTP + Regulus performed a Test campaign in relevant environment in the vacuum chamber at CISAS, University of Padua. This paper is focused on the test campaign description and the main results achieved at different power levels for different duration of the firings.
Keywords
CubeSat Test Platform; environmental tests campaign; miniaturized ambipolar plasma thruster; small satellites;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lim, J.W., Levchenko, I., Rohaizat, M.W., Huang, S., Xu, L., Sun, Y.F., ... & Xu, S. (2016), "Optimization, test and diagnostics of miniaturized hall thrusters", J. Vis. Exp., 144(2), e58466. https://doi.org/10.3791/58466.   DOI
2 Bertolucci, G., Barato, F., Toson, E. and Pavarin, D. (2020), "Impact of propulsion system characteristics on the potential for cost reduction of earth observation missions at very low altitudes", Acta Astronautica, 176, 173-191. https://doi.org/10.1016/j.actaastro.2020.06.018.   DOI
3 Busso, A., Mascarello, M., Corpino, S., Stesina, F. and Mozzillo, R. (2016), "The communication module onboard E-ST@R-II cubesat", Proceedings of 7th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, TTC, ESTEC, Noordwijk, The Netherlands; September.
4 Conversano, R. and Wirz, R. (2011), "CubeSat lunar mission using a miniature ion thruster", 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California, July. https://doi.org/10.2514/6.2011-6083.   DOI
5 Lim, J.W.M., Huang, S.Y., Xu, L., Yee, J.S., Sim, R.Z., Zhang, Z.L., ... & Xu, S. (2018), "Automated integrated robotic systems for diagnostics and test of electric and micropropulsion thrusters", IEEE Tran. Plasma Sci., 46(2), 345-353. https://doi.org/10.1109/TPS.2018.2795023.   DOI
6 Corpino, S. and Stesina, F. (2020), "Inspection of the cis-lunar station using multi-purpose autonomous Cubesats", Acta Astronautica, 175, 591-605. https://doi.org/10.1016/j.actaastro.2020.05.053.   DOI
7 Mazouffre, S., Hallouin, T., Inchingolo, M., Gurciullo, A., Lascombes, P. and Maria, J.L. (2019), "Characterization of miniature Hall thruster plume in the 50 - 200 W power range", Proceedings of 8th European Conference for Aeronautics and Space Science (EUCASS), Madrid, Spain, July.
8 Miller, S., Walker, M.L.R., Agolli, J. and Dankanich, J. (2021), "Survey and performance evaluation of smallsatellite propulsion technologies", J. Spacecraft Rocket., 58(1), 222-231. https://doi.org/10.2514/1.A34774.   DOI
9 Lemmer, K. (2018), "Propulsion for CubeSats", Acta Astronautica, 134, 231-243. https://doi.org/10.1016/j.actaastro.2017.01.048.   DOI
10 Aleina, S.C., Ferretto, D., Stesina, F. and Viola, N. (2016), "A model-based approach to the preliminary design of a space tug aimed at early requirement's verification", Proceedings of the International Astronautical Congress, IAC, Guadalajara, September.
11 Stesina, F. (2019), "Validation of a test platform to qualify miniaturized electric propulsion systems", Aerospace, 6(9), 99. https://doi.org/10.3390/aerospace6090099.   DOI
12 Nichele, F., Villa, M. and Vanotti, M. (2018), "Proximity operations-autonomous space drones", Proceedings of the 4S Symposium, Sorrento, June.
13 O'Reilly, D., Herdrich, G. and Kavanagh, D.F. (2021), "Electric propulsion methods for small satellites: A review", Aerospace, 8(1), 22. https://doi.org/10.3390/aerospace8010022.   DOI
14 Potrivitu, G.C., Sun, Y., Rohaizat, M.W.A.B., Cherkun, O., Xu, L., Huang, S. and Xu, S. (2020), "A Review of Low-Power Electric Propulsion Research at the Space Propulsion Centre Singapore", Aerospace, 7(6), 67. https://doi.org/10.3390/aerospace7060067.   DOI
15 Stesina, F., Corpino, S. and Calvi, D. (2020), "A test platform to assess the impact of miniaturized propulsion systems", Aerospace, 7(11), 163. https://doi.org/10.3390/aerospace7110163.   DOI
16 Tailored ECSS Engineering Standards for In-Orbit Demonstration CubeSat Projects (2016).
17 Trezzolani, F., Magarotto, M., Manente, M. and Pavarin, D. (2018), "Development of a counterbalanced pendulum thrust stand for electric propulsion", Measure., 122, 494-501. https://doi.org/10.1016/j.measurement.2018.02.011.   DOI
18 Tummala, A. and Dutta, A. (2019), "An overview of cube-satellite propulsion technologies and trends", Aerospace, 4(4), 58-67. https://doi.org/10.3390/aerospace4040058.   DOI
19 Corpino, S., Stesina, F., Saccoccia, G. and Calvi, D. (2019), "Design of a CubeSat test platform for the verification of small electric propulsion systems", Adv. Aircraft Spacecraft Sci., 6(5), 427-442. https://doi.org/10.12989/aas.2019.6.5.427.   DOI
20 Correyero, S., Jarrige, J., Packan, D. and Ahedo, E. (2019), "Plasma beam characterization along the magnetic nozzle of an ECR thruster", Plasma Sour. Sci. Technol., 28(9), 095004. https://doi.org/10.1088/1361-6595/ab38e1.   DOI
21 Edlerman, E. and Kronhaus, I. (2017), "Analysis of nanosatellite formation establishment and maintenance using electric propulsion", J. Spacecraft Rocket., 54(3), 731-742. https://doi.org/10.2514/1.A33632.   DOI
22 Gorret, B., Metrailler, L., Pirat, C., Voillat, R., Frei, T., Collaud, X., ... & Lauria, M. (2016), "Developing a reliable capture system for cleanspace one", Proceedings of the International Astronautical Congress, Guadalajara, September.
23 James, K., Moser, T., Conley, A., Slostad, J. and Hoyt, R. (2015), "Performance characterization of the hydros water electrolysis thruster", Proceedings of Small Satellites Conference, Logan, Utah, August.
24 Krejci, D. and Lozano, P. (2018), "Space propulsion technology for small spacecraft", Proc. IEEE, 106(3), 362-378. https://doi.org/10.1109/JPROC.2017.2778747.   DOI
25 Krejci, D., Jenkins, M.G. and Lozano, P. (2019), "Staging of electric propulsion systems: Enabling an interplanetary Cubesat", Acta Astronautica, 160, 175-182. https://doi.org/10.1016/j.actaastro.2019.04.031.   DOI
26 Levchenko, I., Bazaka, K., Ding, Y., Raitses, Y., Mazouffre, S., Henning, T., ... & Xu, S. (2018), "Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers", Appl. Phys. Rev., 5(1), 011104. https://doi.org/10.1063/1.5007734.   DOI
27 Reissner, A., Buldrini, N., Seifert, B., Horbe, T., Plesescu, F., Gonzalez Del Amo, J. and Massotti, L. (2016), "10000 h lifetime testing of mn feep thruster", 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, Utah, August.
28 Schoolcraft, J., Klesh, A. and Werne, T. (2017), "MarCO: Interplanetary mission development on a CubeSat scale", Space Operations: Contributions from the Global Community, Springer, Cham.
29 Montag, C., Starlinger, V., Herdrich, G. and Schonherr, T. (2018), "A high precision impulse bit pendulum for a hardware-in-the-loop testbed to characterize the pulsed plasma thruster PETRUS 2.0", Proceedings of 7th Russian-German Conference on Electric Propulsion, Germany, October.
30 Pallichadath, V., Radu, S., de Athayde Costa e Silva, S., Guerrieri, M. and Cervone, D. (2018). "Integration and miniaturization challenges in the design of micro-propulsion systems for picosatellite platforms", Proceeding of 3AF, ESA and CNES, Space Propulsion, Sivilla, Spain, May.
31 Tsay, M., Model, J., Barcroft, C., Frongillo, J., Zwahlen, J. and Feng, C. (2017), "Integrated testing of iodine BIT-3 RF ion propulsion system for 6U CubeSat applications", Proceedings of 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA, October.
32 Walker, R., Koschny, D. and Bramanti, C. (2017), "Miniaturised asteroid remote geophysical observer (MARGO): A stand-alone deep space CubeSat system for low-cost science and exploration missions", 6th Interplanetary CubeSat Workshop, Cambridge, UK, May.
33 Curzi, G., Modenini, D. and Tortora, P. (2020), "Large constellations of small satellites: A survey of near future challenges and missions", Aerospace., 7(9), 133. http://doi.org/10.3390/AEROSPACE7090133.   DOI
34 Hakima, H. and Emami, M.R. (2020), "Deorbiter cubesat system engineering", J. Astronaut. Sci, 67, 1600-1635. https://doi.org/10.1007/s40295-020-00220-5.   DOI
35 VanWoerkom, M., Gorokhovsky, V., Pulido, G., Seidcheck, A., Williams, J. and Farnell, C. (2019), "Test results of ExoTerra's halo micro electric propulsion system for microsatellites", Proceedings of AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, August.
36 Zaberchik, M., Lev, D.R., Edlerman, E. and Kaidar, A. (2019). "Fabrication and testing of the cold gas propulsion system flight unit for the Adelis-SAMSON nano-satellites", Aerospace, 6(8), 91. https://doi.org/10.3390/aerospace6080091.   DOI
37 Manente, M., Trezzolani, F., Magarotto, M., Fantino, E., Selmo, A., Bellomo, N., ... & Pavarin, D. (2019), "REGULUS: A propulsion platform to boost small satellite missions", Acta Astronautica, 157, 241-249. https://doi.org/10.1016/j.actaastro.2018.12.022.   DOI
38 Stesina, F., Corpino, S., Calvi, D., Pavarin, D., Trezzolani, F., Bellomo, N., ... & Gonzalez Del Amo, J. (2020), "Test campaign of a Cubesat equipped with a helicon plasma thruster", International Astronautical Federation, 71st International Astronautical Congress, Dubai, October.
39 Ciaralli, S., Coletti, M. and Gabriel, S.B. (2016), "Results of the qualification test campaign of a Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP)", Acta Astronautica, 121, 314-322. https://doi.org/10.1016/j.actaastro.2015.08.016.   DOI
40 Corpino, S., Stesina, F., Calvi, D. and Guerra, L. (2020), "Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle", Adv. Aircraft Spacecraft Sci., 7(3), 271-290, https://doi.org/10.12989/aas.2020.7.3.271.   DOI
41 Habl, L., Rafalskyi, D. and Lafleur, T. (2020), "Ion beam diagnostic for the assessment of miniaturized electric propulsion systems", Rev. Scientif. Instrum., 91(9), 093501. https://doi.org/10.1063/5.0010589.   DOI
42 King, J.T., Kolbeck, J., Kang, J.S., Sanders, M. and Keidar, M. (2020), "Performance analysis of nano-sat scale µCAT electric propulsion for 3U CubeSat attitude control", Acta Astronautica, 178, 722-732. https://doi.org/10.1016/j.actaastro.2020.10.006.   DOI
43 Krejci, D., Seifert, B. and Scharlemann, C. (2013), "Endurance testing of a pulsed plasma thruster for nanosatellites", Acta Astronautica, 91, 187-193. https://doi.org/10.1016/j.actaastro.2013.06.012.   DOI
44 Lightsey, E.G., Stevenson, T. and Sorgenfrei, M. (2018), "Development and testing of a 3-D-printed cold gas thruster for an interplanetary cubesat", Proc. IEEE, 106(3), 379-390. https://doi.org/10.1109/JPROC.2018.2799898.   DOI