• Title/Summary/Keyword: thermal dissociation

Search Result 97, Processing Time 0.021 seconds

NO Removal Characteristics in $N_2$ for a Dielectric Barrier Discharge Reactor with the Variation of a Discharge Gap (유전체 장벽 방전 반응기에서 방전 간극의 변화에 따른 질소 분위기하의 NO 제거 특성)

  • 차민석;이재옥;신완호;송영훈;김석준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.407-408
    • /
    • 2000
  • 유전체 장벽 방전 반응기 (Dielectric Barrier Discharge (DBD) Reactor)를 이용한 비열 플라즈마(Non-thermal plasma) 공정에서 NO 제거 특성을 실험적으로 연구하였다. 질소 분위기에서 전자에 의한 NO 의 제거는 $N_2$ + e $\longrightarrow$ N + N + e 반응에 의한 질소의 전자충돌해리 (electron-impact dissociation)와 이 반응에 의하여 생성된 질소원자에 의한 NO 의 환원반응 N + NO $\longrightarrow$ $N_2$ + O 으로 설명될 수 있으며, 이로 인하여 $O_2$$H_2O$ 의 첨가에 따른 부산물(O, $O_3$, OH 등)에 의한 산화반응이 주로 일어나는 경우 (XO + NO $\longrightarrow$ X + NO$_2$) 와는 달리 NO 제거에 소모된 에너지를 평가하기에 용이한 장점이 있다(Penetrante et al., 1995). (중략)

  • PDF

Binding Characteristics of Molecularly Imprinted Polymers for Ibuprofen Enantiomers (아이뷰프로펜 이성질체에 대한 molecularly imprinted polymers의 binding 특성)

  • 신명근;조규헌
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.273-278
    • /
    • 1999
  • The molecularly imprinted polymers(MIPs) synthesized at various polymerization conditions were examined as ibuprofen receptors in terms of binding characteristics. The 4-vinylpyridine polymers had 1.2 times higher adsorption capability for (S)-(+)-ibuprofen than the methacrylic acid polymers. The methacrylic acid polymers synthesized by UV radiation had 1.9 times higher selectivity for (S)-(+)-ibuprofen compared to those by thermal initiation. Effects of various solvents for binding were also examined in this research. According to the Scatchard analysis, the (S)-(+)-ibuprofen artificial receptors had two different kinds of binding sites for (S)-(+)-ibuprofen while having only single kind of binding site for ketoprofen. The binding sites of (S)-(+)-ibuprofen, n were calculated as 4.3~4.9 $\mu$mol/g and the dissociation constants, $K_D$ were 0.68 mM for the specific binding.

  • PDF

Characteristics of Outgas from Heated Barrier Rib for POP (PDP용 격벽재의 승온 탈가스 특성)

  • 김선호;주정훈;이석영;이강욱;오상진
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Plasma Display Panel is a display device emitting fluorescent light from gas discharge between a front and a rear panel sealed together. Front and rear panel have multitude of film layers and barrier ribs in the rear panel has the largest area so releasing various gases and affecting light emitting characteristics and lifetime. The remaining gases in a barrier rib were studied by thermal desorption analysis up to $400^{\circ}C$ and main gases were $H_2$ $H_2$O, CO. During sustaining at $300^{\circ}C$, the outgassing rates from other gases were decreased but$ H_2$ kept constantly increasing until 1 hour, which can be originated from the dissociation of organics remained in the inside of barrier rib material. In $H_2$O, two distinct peaks were observed: desorption from physically adsorbed one at $l00^{\circ}C$ and from chemically adsorbed one $400^{\circ}C$. The result can be utilized in interpretation of electronic and optical characteristics and evacuation process control of PDP

Conformational Studies of Gaseous Proteins Using Mass Spectrometry

  • Oh, Han-Bin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.27-27
    • /
    • 2003
  • Conformations of the +5 to +13 charge state of ubiquitin ions have been studied in the gas phase by an Electron Capture Dissociation (ECD) mass spectrometry (MS) technique. This approach has showed that the conformations of the gaseous ions change from the compact to extended structures as the number of protons on the protein ions increases, consistent with previous collisional cross-section measurements by an ion-mobility MS. However, this observation is in contrast to that of the solution-phase where the unique native structure is usually found. The (un)folding stability and kinetics of these gaseous ions were further investigated experimentally using gradual blackbody-radiation or sudden laser-induced thermal heating, respectively. These studies have provided the evidence that the thermodynamics and kinetics of protein (un)folding in the gas phase are quite different from those of the native aqueous proteins.

  • PDF

The Solvent Effects on the Formation of Polyynes by Laser Ablation

  • Park, Young-Eun;Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2439-2442
    • /
    • 2012
  • In order to explore the effects of the solvent on the formation rate of polyynes, we investigated the absorption spectra of polyynes obtained by laser ablation of a graphite target in different solvents at 1064 nm. Polyynes so produced were confirmed by the Raman band around $2200cm^{-1}$ which corresponds to the carbon triple bonds. The production of polyynes by laser ablation turned out to be significantly affected by the ratio of the hydrogen and carbon atoms in the solvent molecule. No clear correlations were observed in the formation of polyynes for other properties of the solvent such bond dissociation energy, thermal conductivity, and total mass of hydrogen atoms per volume of solvent.

Liquid crystal alignment and photo-induced pretilt by imidization temperature. (소성온도에 따른 광유기된 프리틸트와 액정배향)

  • 서대식;김형규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.533-536
    • /
    • 1999
  • In this study, we investigated pretilt angle generation and liquid crystal alignment by UV light irradiation during imidization of polyimide. Generated pretilt angle of NLC by using in-situ UV photo-alignment method was smaller than that of the conventional UV photo-alignment method. Also, generated pretilt angle of NLC tends to increase by annealing. We found that in-situ UV photo-alignment method has higher thermal stability of LC alignment, but it has a disadvantage to control pretilt angle.

  • PDF

EFFECTS OF SUBSTRATE TEMPERATURE ON PROPERTIES OF FLUORINE CONTAINED SILICON OXIDE FILMS PREPARED BY MICROWAVE PLASMA- ENHANCED CVD

  • Sugimoto, Nobuhisa;Hozumi, Atsushi;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.577-584
    • /
    • 1996
  • Silicon oxide films with high hardness and water repellency were prepared by microwave plasma-enhanced CVD using four kind of organosilicon compound-fluoro-alkyl silane mixtures as source gases. An argon gas was used as a carrier gas for fluoro-alkyl silane. The substrate temperatures during deposition were controlled by resistant heating at a constant value between 50 and $300^{\circ}C$. The hardness of the films increased, but the deposition rate and the contact angle for a water drop decreased with increasing substrate temperature. The number of methoxy groups also affected the water repellency and hardness. The deposited films became more inorganic with increasing substrate temperature because of the thermal dissociation of reactants.

  • PDF

XPS Studies of CO Adsorption on Polycrystalline Nickel Surface

  • Boo, Jin-Hyo;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.388-393
    • /
    • 1988
  • The chemisorption of CO molecules on polycrystalline nickel surface has been studied by investigating the resulting chemisorbed species with the X-ray photoelectron spectroscopy at temperatures between 300K through 433K. It is found that the adsorbed CO molecules are dissociated by the simple C-O bond cleavage as well as by the disproportionation reaction at temperatures above 373K. The former type dissociation is more favored at low coverages and at elevated temperatures. The isotherms of CO chemisorption are obtained from the xps intensities of C 1s peaks, and then the activation energy of the dissociative adsorption is estimated as a function of the CO exposure. These activation energies are extrapolated to zero coverage to obtain the activation energy of chemisorption in which thermal C-O bond cleavage takes place. The value obtained is 38.1 kJ/mol.

First Example of Monometallic Palladium(II) Compound with Trans-Chelating Tridentate Ligand: Synthesis, Crystal Structure, and Characterizations

  • Tae Hwan Noh
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.110-115
    • /
    • 2023
  • The reaction of (COD)PdCl2 with new C3-symmetric tridentate L (COD = 1,5-cyclooctadien; L = 1,3,5-tris(picolinoyloxyethyl)cyanurate) in a mixture of acetone and dichloromethane produces single crystals consisting of unprecedented monometallacyclic [PdCl2(L)]. This cyclic compound arises from trans-chelation of two of three donating pyridyl groups of L, while the third pyridyl group remains uncoordinated. Electrospray ionization mass spectrometry (ESI-MS) data on L exhibited the major peak corresponding to [C27H24N6O9 + H+]+. Fast atom bombardment mass spectrometry (FABMS) data on [PdCl2(L)], however, showed the mass peak corresponding to the L instead of the present palladium(II) compound species, due to the insolubility and dissociation in solution. The physicochemical properties of the present palladium(II) compound were fully characterized by means of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, thermal analysis, single-crystal X-ray diffraction (SC-XRD) measurement.

The Partial Oxidation of Methanol of MoO3 Catalyst (MoO3 촉매상에서의 메탄올 부분산화반응)

  • Kim, Jeong-Hi;Park, Youn-Seok;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.127-137
    • /
    • 1991
  • The dissociation and partial oxidation of $CH_3OH$ on polycrystalline $MoO_3$ powder catalyst were studied using thermal desorption spectrometry(TDS) under high vacuum condition. $CH_3OH$ was dissociatively adsorbed on $MoO_3$ in the forms of surface methoxy($-OCH_3$) and atomic hydrogen(-H). $CH_3OH$ desorbed at 425 K via the re-association of methoxy and adsorbed hydrogen atom, and HCHO desorbed at 545 K through the bond breakage of C-H in methoxy. Water TDS spectra showed two desorption peaks, that is, ${\alpha}$-peak at 428 K and ${\beta}$-peak at 586 K. It was suggested that ${\alpha}$-peak was due to the hydroxyl formed on $MoO_3$ surface during the dissociation of $CH_3OH$, and that ${\beta}$-peak was from the association of lattice oxygen and surface hydrogen atom formed by the bond breakage of C-H in methoxy. Pre-adsorbed oxygen on the surface of $MoO_3$ catalyst increased the amount of adsorption of $CH_3OH$ by promoting the dissociation of $CH_3OH$ on the surface, whereas pre-adsorbed water decreased the amount of adsorption of $CH_3OH$ by blocking of adsorption sites for $CH_3OH$.

  • PDF