• Title/Summary/Keyword: thermal diffusion coating

Search Result 57, Processing Time 0.026 seconds

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

Basic Study on Combustion Characteristics of Coaxial Premixed Burner with the Addition of $Al_2O_3$ Particles (산화 알루미나 입자 첨가에 따른 동축류 예혼합 연소기의 연소 특성 기초연구)

  • Park, Seung-Il;Kim, Go-Tae;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • Thermal spray technology has been used in many industrial application. Especially, thermal spray coating have been employed with the purposes of achieving better resistances in abrasion, heat and corrosion. In the previous studies on the thermal spray coating, thermal spray characteristics from the perspective of combustion engineering have not been investigated sufficiently, while the material characteristics of the coated substrates have been investigated widely. In this study, the effect of spray particles on the flame behavior was experimentally investigated. The amount of the injected particles was measured using the light scattering method and the temperature of the particles was estimated using a two-color method. Various flame-spray interactions were observed and it was found that the high temperature zone near the flame is elongated by particles density. Based on these results, the applicability of the light scattering method and the two-color method was discussed.

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Thermal Degradation of Black Cobalt Solar Selective Coatings (흑색 코발트 태양 선택흡수막의 열퇴화)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.9-15
    • /
    • 2015
  • Black cobalt solar selective coatings were prepared by using an electroplating method. The changes in the optical properties of the black cobalt selective coating due to thermal degradation were analyzed by using the Auger electron spectroscopy (AES) and spectrophotometer. The black cobalt selective coating was prepared on a copper substrate by using a synthesized electrolyte with $CoCl_2$ and KSCN at a current density of ${\sim}0.5A/dm^2$ for 45s ~ 60s. Its optical properties were a solar absorptance (${\alpha}$) of the order of 0.80 ~ 0.84 and a thermal emittance (${\epsilon}$) of 0.01. From the AES depth profile analysis of heated sample, thermal degradation of the black cobalt selective coating heated for 33 hours at temperature of $350^{\circ}C$ occurred primarily due to interdiffusion at interface of cobalt and copper substrate. This results were predictable that the ${\alpha}$ decreases due to the thermal oxidation and diffusion.

Rutherford Backscattering of Black Chrome Solar Selective Coatings (흑색크롬 태양광 선택흡수막의 Rutherford산란)

  • Lee, Kil-Dong;Chea, Young-Hi;Auh, Paul-Chung-Moo
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 1990
  • The influence of substrate materials on the thermal stability of black chrome coating was investigated by Rutherford backscattering spectrometry(RBS). In order to study thermal degradation the sample were annealed in air for 24 hour at temperature of 450. Cu, Ni, and S.S(Stainless steel 304) were used as substrate for selective coating. The experimental results of substrate diffusion was discussed. It was found that little diffusion of substrate material occurred for the sample pre. pared on stainless steel.

  • PDF

Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC) (플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화)

  • Kim, Byoung-Hee;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.505-512
    • /
    • 1998
  • In this study, two-layer thermal barrier coatings composed of plasma sprayed 0.3mm $ZrO_2(8wt% Y_2o_3)$ ceramic coating layer and O.lmm $NiCrAlCoY_20_3$ bond coating layer on AISI 316 were investigated microstructure of the coating, oxidation of the metallic bond coating and adhesive strength to evaluate the durability of coating layer after cyclic and isothermal test at 90$0^{\circ}C$. And quantitative phase analysis of $ZrO_2(8wt% Y_2o_3)$ ceramic coating was performed as a function of thermal exposure time using XRD technique. The results showed that the amount of m - 2rO, phase in the coating was slightly increased with increasing thermal exposure time at 90$0^{\circ}C$. The c/a ratio of t' - $ZrO_2$ in the as-sprayed coating was 1.0099 and slightly increased to 1.0115 after 100 hours heat treatment. It was believed that $Y_2O_3$ in high yttria tetragonaJ(t') was transformed to low yttria tetragonaJ(t) by $Y_2O_3$ diffusion with increasing thermal exposure time. The adhesive strength was gradually decreased as thermal exposure time increased. After the isothermal test, the failure predominantly occured in ceramic coating layer. On the other hand. the specimens after cyclic thermal test were mostly failed at bond coating/ceramic coating interface. The failure was oeeured by decreasing the bond strength between bond coating and oxide scale which were formed by oxidation of the metallic elements within bond coating and by thermal stress due to thermal expansion mismatches between the oxide scale and ceramic coating.

  • PDF

A study on Au-Sn alloy plating layer improving reliability of electrical contacts (전자부품 커넥터의 접속 신뢰성 향상을 위한 Au-Sn 합금 도금층 연구)

  • Choi, Jong Hwan;Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.408-416
    • /
    • 2022
  • In this study, the effect of Au-Sn alloy coating on reliability of electrical contacts was investigated via comparison with Au-Co alloy coating. The results show that Au-Sn alloy exhibited lower contact resistance and higher solder spreadability than those of Au-Co alloy after thermal aging. In the case of Au-Co alloy plating, the underlying Ni element diffused into Au-Co layer to form Ni oxides on surface during thermal aging, leading to increased contact resistance and decreased solder spreadability. Meanwhile, for Au-Sn alloy plating, Au-Ni-Sn metallic compound was formed at the interface between Au-Sn layer and underlying Ni layer. This compound acted as a diffusion barrier, thereby inhibiting the diffusion of Ni to Au-Sn layer during thermal aging. Consequently, Au-Sn alloy layer showed better contact reliability than that of Au-Co alloy layer.

Study on the Optimization of Superhydrophobic Coating for the Durability of Gas Diffusion Layer in Alkaline Fuel Cells (알카라인 연료전지 가스확산층 내구성 향상을 위한 초발수 코팅 최적화 연구)

  • Kim, Soong Yeon;Seo, Minhye;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.691-695
    • /
    • 2017
  • Optimization study was carried out to improve the durability of the gas diffusion layer (GDL) in alkaline fuel cell cathode by the use of highly stable PDMS superhydrophobic coating. Two different commercial GDLs were selected as substrates. Coating temperature and viscosity of PDMS were controlled for the stability of structure in microporous layer of GDL as well as uniform coating according to thermal characteristics of GDL. Regardless of PDMS viscosity, highly stable superhydrophobicities were obtained with both GDLs at $200^{\circ}C$. After the accelerated test, however, 28BC GDL coated with 1000 CS PDMS showed the best durability with the lowest loss of superhydrophobicity.

Silicon Carbide Coating by Thermal Decomposition of tetramethylsilane

  • YOON Kyung-Hoon
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 1986.12a
    • /
    • pp.211-225
    • /
    • 1986
  • Silicon carbide coating has been studied using a graphite substrate, a mixture of tetramethylsilane and hydrogen or argon at deposition temperature (T) of 950 to $1200^{\circ}C$ total pressure of 20 to 50 torr and carrier gas flow rate of 0 to 901/h. Deposition kinetic study has shown that a transition, from a surface reaction limited process to a diffusion limited one, takes place near $1100^{\circ}C$. Deposition rate depends directly upon the experimental parameters. The influence of the main process parameters is also discussed to relate the physiochemical properties of the coating to the deposition conditions.

  • PDF

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF