• Title/Summary/Keyword: thermal budget

Search Result 86, Processing Time 0.02 seconds

High Quality Ultrathin Gate Oxides Grown by Low-Temperature Radical Induced Oxidation for High Performance SiGe Heterostructure CMOS Applications (저온 래디컬 산화법에 의한 고품질 초박막 게이트 산화막의 성장과 이를 이용한 고성능 실리콘-게르마늄 이종구조 CMOS의 제작)

  • 송영주;김상훈;이내응;강진영;심규환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.765-770
    • /
    • 2003
  • We have developed a low-temperature, and low-pressure radical induced oxidation (RIO) technology, so that high-quality ultrathin silicon dioxide layers have been effectively produced with a high reproducibility, and successfully employed to realize high performace SiGe heterostructure complementary MOSFETs (HCMOS) lot the first time. The obtained oxide layer showed comparable leakage and breakdown properties to conventional furnace gate oxides, and no hysteresis was observed during high-frequency capacitance-voltage characterization. Strained SiGe HCMOS transistors with a 2.5 nm-thick gate oxide layer grown by this method exhibited excellent device properties. These suggest that the present technique is particularly suitable for HCMOS devices requiring a fast and high-precision gate oxidation process with a low thermal budget.

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil;Kim, Jongyul;Lee, Eunjoong;Moon, Myungkook;Cho, Sangjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2020
  • Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

Diffusion and Thermal Stability Characteristics of W-B-C-N Thin Film (W-B-C-N 확산방지막의 특성 및 열적 안정성 연구)

  • Kim, Sang-Yoon;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.75-78
    • /
    • 2006
  • In case of contacts between semiconductor and metal in semiconductor circuits, they become unstable because of thermal budget. To prevent these problems, we use diffusion barrier that has a good thermal stability between metal and semiconductor. So we consider the diffusion barrier to prevent the increase of contact resistance between the interfaces of metals and semiconductors, and the increase of resistance and the reaction between the interfaces. In this paper we deposited tungsten boron carbon nitride (W-B-C-N) thin film on silicon substrate. The impurities of the $1000\;{\AA}-thick$ W-B-C-N thin films provide stuffing effect for preventing the inter-diffusion between metal thin films $(Cu-2000\;{\AA})$ and silicon during the high temperature $(700\~1000^{\circ}C)$ annealing process.

A monopulse radar uncertainty study classified on target property (표적 특성에 따른 모노펄스 레이더 불확도 연구)

  • Jang, Yong-sik;Ryu, Chung-ho;Kim, Whan-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.229-236
    • /
    • 2017
  • In general, an error budget of monopulse radar is proposed by manufacturer who assuming that all of external enviromental error resources such as multipath, glint, dynamic lag variation are removed. So until now, a measurement uncertainty of monopulse radar can be discussed including external enviromental error resources. In this paper, it is described that which kinds of error resource can effect on monopulse radar measurement uncertainty for different target property. To prove it experimentally, at first a simulation result is described assuming that all of external enviromental error resources are removed. It only includes receiver thermal noise. And then, monopulse radar measurement uncertainty estimation results tracking on calibration target which is fixed on specific position, calibration sphere which is moving slowly, weapon systems firing test which is moving fast are described quantitativly. All of these targets have different dynamic property.

Effect of Foehn Wind on Record-Breaking High Temperature Event (41.0℃) at Hongcheon on 1 August 2018 (2018년 8월 1일 홍천에서의 기록적인 고온 사례(41.0℃)에 영향을 준 푄 바람)

  • Kim, Seok-Hwan;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.199-214
    • /
    • 2021
  • A record-breaking high surface air temperature of 41.0℃ was observed on 1 August 2018 at Hongcheon, South Korea. In this study, to quantitatively determine the formation mechanism of this extremely high surface air temperature, particularly considering the contributions of the foehn and the foehnlike wind, observational data from Korea Meteorological Administration (KMA) and the Weather Research and Forecasting (WRF) model were utilized. In the backward trajectory analysis, trajectories of 100 air parcels were released from the surface over Hongcheon at 1600 LST on 1 August 2018. Among them, the 47 trajectories (38 trajectories) are tracked back above (below) heights of 1.4 km above mean sea level at 0900 LST 31 July 2018 and are defined as upper (lower) routes. Lagrangian energy budget analysis shows that for the upper routes, adiabatic heating (11.886 × 103 J kg-1) accounts for about 77% of the increase in the thermal energy transfer to the air parcels, while the rest (23%) is diabatic heating (3.650 × 103 J kg-1). On the other hand, for the lower routes, adiabatic heating (6.111 × 103 J kg-1) accounts for about 49% of the increase, the rest (51%) being diabatic heating (6.295 × 103 J kg-1). Even though the contribution of the diabatic heating to the increase in the air temperature rather varies according to the routes, the contribution of the diabatic heating should be considered. The diabatic heating is caused by direct heating associated with surface sensible heat flux and heating associated with the turbulent mixing. This mechanism is the Type 4 foehn described in Takane and Kusaka (2011). It is concluded that Type 4 foehn wind occurs and plays an important role in the extreme event on 1 August 2018.

Experimental study on the cryogenic thermal storage unit (TSU) below -70 ℃

  • Byeongchang Byeon;Kyoung Joong Kim;Sangkwon Jeong;Dong min Kim;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Seong Woo Lee;Keun Tae Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 2024
  • Over the past four years, as the COVID-19 pandemic has struck the world, cold chain of COVID-19 vaccination has become a hot topic. In order to overcome the pandemic situation, it is necessary to establish a cold chain that maintains a low-temperature environment below approximately 203K (-70℃), which is the appropriate storage temperature for vaccines, from vaccine suppliers to local hospitals. Usually, cryocoolers are used to maintain low temperatures, but it is difficult for small-scale local distribution to have cryocooler due to budget and power supply issues. Accordingly, in this paper, a cryogenic TSU (Thermal storage unit) system for vaccination cold chain is designed that can maintain low temperatures below -70℃C for a long time without using a cryocooler. The performance of the TSU system according to the energy storage material for using as TSU is experimentally evaluated. In the experiments, four types of cold storage materials were used: 20% DMSO aqueous solution, 30% DMSO aqueous solution, paraffin wax, and tofu. Prior to the experiment, the specific heat of the cold storage materials at low temperature were measured. Through this, the thermal diffusivity of the materials was calculated, and paraffin wax had the lowest value. As a result of the TSU system's low-temperature maintenance test, paraffin wax showed the best low-temperature maintenance performance. And it recorded a low-temperature maintenance time that was about 24% longer than other materials. As a result of analyzing the temperature trend by location within the TSU system, it was observed that heat intrusion from the outside was not well transmitted to the low temperature area due to the low thermal conductivity of paraffin wax. Therefore, in the TSU system for vaccine storage, it was experimentally verified that the lower the thermal diffusivity of the cold storage material, the better low temperature maintenance performance.

Estimation of Surplus Solar Energy in Greenhouse (II) (온실내 잉여 태양에너지 산정(II))

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Hyeon-Tae;Km, Yong-Ju;Yoon, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2011
  • This study is about an analysis of surplus solar energy by important greenhouse type using Typical Meteorological Year (TMY) data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generated in greenhouses during the daytime. The 07-auto-1 and 08-auto-1 types showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~29.0% regardless of greenhouse type. About 54.0~225.0% and 53.0~218.0% of required heating energy will be able to be supplemented respectively according to the greenhouse types. The 07-mono-1 and 07-mono-3 types also showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~26.0% and 21.0~27.0% respectively by greenhouse type. About 57.0~211.0% and 62.0~228.0% of required heating energy will be able to be supplemented by greenhouse type. Except for Daegwallyeong and Suwon area, other regions can cover heating energy only by surplus solar energy, according to the study.

A Study on the Structure Fabrication of LDD-nMOSFET using Rapid Thermal Annealing Method of PSG Film (PSG막의 급속열처리 방법을 이용한 LDD-nMOSFET의 구조 제작에 관한 연구)

  • 류장렬;홍봉식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.80-90
    • /
    • 1994
  • To develop VLSI of higher packing density with 0.5.mu.m gate length of less, semiconductor devices require shallow junction with higher doping concentration. the most common method to form the shallow junction is ion implantation, but in order to remove the implantation induced defect and activate the implanted impurities electrically, ion-implanted Si should be annealed at high temperature. In this annealing, impurities are diffused out and redistributed, creating deep PN junction. These make it more difficult to form the shallow junction. Accordingly, to miimize impurity redistribution, the thermal-budget should be kept minimum, that is. RTA needs to be used. This paper reports results of the diffusion characteristics of PSG film by varying Phosphorus weitht %/ Times and temperatures of RTA. From the SIMS.ASR.4-point probe analysis, it was found that low sheet resistance below 100 .OMEGA./ㅁand shallow junction depths below 0.2.mu.m can be obtained and the surface concentrations are measured by SIMS analysis was shown to range from 2.5*10$^{17}$ aroms/cm$^{3}$~3*10$^{20}$ aroms/cm$^{3}$. By depending on the RTA process of PSG film on Si, LDD-structured nMOSFET was fabricated. The junction depths andthe concentration of n-region were about 0.06.mu.m. 2.5*10$^{17}$ atom/cm$^{-3}$ , 4*10$^{17}$ atoms/cm$^{-3}$ and 8*10$^{17}$ atoms/cm$^{3}$, respectively. As for the electrical characteristics of nMOS with phosphorus junction for n- region formed by RTA, it was found that the characteristics of device were improved. It was shown that the results were mainly due to the reduction of electric field which decreases hot carriers.

  • PDF

The Investigation of Microwave irradiation on Solution-process amorphous Si-In-Zn-O TFT

  • Hwang, Se-Yeon;Kim, Do-Hun;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.205-205
    • /
    • 2015
  • 최근, 비정질 산화물 반도체를 이용한 TFT는 투명성, 유연성, 저비용, 저온공정이 가능하기 때문에 차세대 flat-panel 디스플레이의 back-plane TFT로써 다양한 방면에서 연구되고 있다. 산화물 반도체 In-Zn-O-시스템에서는 Gallium (Ga)을 suppressor로 사용한 a-In-Ga-Zn-O (a-IGZO) 뿐만 아니라, Magnesium (Mg), Hafnium (Hf), Tin (Sn), Zirconium (Zr) 등의 다양한 물질이 연구되었다. 그 중 Silicon (Si)은 Ga, Hf, Sn, Zr, Mg과 같은 suppressor에 비해 구하기 쉬우며 가격적인 측면에서도 저렴하다는 장점이 있다. solution 공정으로 제작한 산화물 반도체 TFT는 진공 시스템을 사용한 공정보다 공정시간이 짧고, 저비용, 대면적화가 가능하다는 장점이 있다. 하지만, 투명하고 유연한 device를 제작하기 위해서는 저온 공정과 low thermal budget은 필수적이다. 이러한 측면에서 MWI (Microwave Irradiation)는 저온공정이 가능하며, 짧은 공정 시간에도 불구하고 IZO 시스템의 산화물 반도체의 전기적 특성 향상을 기대할 수 있는 효율 적인 열처리 방법이다. 본 연구에서는 In-Zn-O 시스템의 TFT에서 silicon (Si)를 Suppressor로 사용한 a-Si-In-Zn-O (SIZO) TFT를 제작하여 두 가지 열처리 방법을 사용하여 TFT의 전기적 특성을 확인하였다. 첫 번째 방법은 Box Furnace를 사용하여 N2 분위기에서 $600^{\circ}C$의 온도로 30분간 열처리 하였으며, 두 번째는 MWI를 사용하여 1800 W 출력 (약 $100^{\circ}C$)에 2분간 열처리 하였다. MWI 열처리는 Box Furnace 열처리에 비해 저온 공정 및 짧은 시간에도 불구하고 향상된 전기적 특성을 확인 할 수 있었다.

  • PDF

Performance Evaluation of Four Different Land Surface Models in WRF

  • Lee, Chong Bum;Kim, Jea-Chul;Belorid, Miloslav;Zhao, Peng
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • This study presents a performance evaluation of four different land surface models (LSM) available in Weather Forecast Research (WRF). The research site was located in Haean Basin in South Korea. The basin is very unique by its geomorphology and topography. For a better representation of the complex terrain in the mesoscale model were used a high resolution topography data with a spatial resolution of 30 meters. Additionally, land-use layer was corrected by ground mapping data-sets. The observation equipments used in the study were an ultrasonic anemometer with a gas analyzer, an automatic weather station and a tethered balloon sonde. The model simulation covers a four-day period during autumn. The result shows significant impact of LSM on meteorological simulation. The best agreement between observation and simulation was found in the case of WRF with Noah LSM (WRF-Noah). The WRF with Rapid Update Cycle LSM (WRF-RUC) has a very good agreement with temperature profiles due to successfully predicted fog which appeared during measurements and affected the radiation budget at the basin floor. The WRF with Pleim and Xiu LSM (WRF-PX) and WRF with Thermal Diffusion LSM (WRF-TD) performed insufficiently for simulation of heat fluxes. Both overestimated the sensible and underestimated the latent heat fluxes during the daytime.