• Title/Summary/Keyword: thermal breakdown

Search Result 318, Processing Time 0.032 seconds

Electrical Breakdown and Flashover Characteristics of Gaseous Helium at Cryogenic Temperature (극저온 헬륨가스의 절연파괴 및 연면방전 특성)

  • Kwag, Dong-Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.38-42
    • /
    • 2012
  • Fixtures such as bushings in terminations of high temperature superconducting(HTS) power cable systems are subjected to high voltages, which have to transition from ambient to cryogenic temperatures. As such it is imperative to ensure the integrity of the dielectrics under all operating conditions, including thermal aspects brought about by the passage of current. Gaseous helium(GHe) at high pressure is regarded as a potential coolant for superconducting cables. The dielectric aspects of cryogenic helium gas are both complex and demanding. In this experimental study we looked at the interface between a smooth epoxy surface and high pressure helium gas in a homogeneous electric field. The alternating current(AC) flashover voltages of epoxy samples are presented. The results have been analyzed by using Weibull statistics. In addition to the behavior of the epoxy in gaseous helium as a function of pressure and temperature we also present data of the characteristics of the epoxy in mineral oil and in liquid nitrogen($LN_2$). The breakdown characteristics of a uniform field gap in gaseous helium as a function of pressure and temperature under AC, direct current(DC) and lightning impulse voltages are also given. Electric field calculations have been made for one of the experimental geometries in an attempt to explain some of the anomalies in the experimental results.

A Study on the Breakdown Mechanism of Rotating Machine Insulation

  • Kim, Hee-Gon;Kim, Hee-Soo;Park, Yong-Kwan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.71-76
    • /
    • 1997
  • A lot of experiments and analyses have been done to determine the aging mechanism of mica-epoxy composite material used for large generator stator windings in order to estimate remaining life of the generator for last decades. After degrading artificially the mica-epoxy composite material, the surface analysis is performed to analyze breakdown mechanism of insulation in air and hydrogen atmosphere; i) In the case of air atmosphere, it is observed that an aging propagation from conductor to core by partial discharge effect and the formation of cracks between layers is widely carbonized surface. ii) In case of hydrogen atmosphere, the partial discharge effect is reduced by the hydrogen pressure (4kg/$\textrm{cm}^2$). Potassium ions forming a sheet of mica is replaced by hydrogen ions, which can lead to microcracks. It is confirmed that the sizes of crack by SEM analysis are 10∼20[$\mu\textrm{m}$] in length under air, and 1∼5[$\mu\textrm{m}$] in diameter, 10∼50[$\mu\textrm{m}$] in length under hydrogen atmosphere respectively. The breakdown mechanism of sttor winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the postassium ions of mica components are replaced by H\ulcorner, H$_3$O\ulcorner at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium enable creation of voids and cracks due to thermal, mechanical, electrical and environmental stresses.

  • PDF

Thermal, Electrical Properties for Epoxy/Microsilica/Nanosilica Composites (에폭시/마이크로실리카/나노실리카 혼합 콤포지트의 열적, 전기적 특성)

  • Kang, Geun-Bae;Kwon, Soon-Seok;Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.779-785
    • /
    • 2012
  • The epoxy/micro-and nano-mixed silica composites(EMNC) systems were prepared and the AC insulation breakdown strength was evaluated. Glass transition temperature (Tg) and crosslink density were also measured by dynamic mechanical analyzer(DMA) in order to correlate them with the electrical and mechanical properties, and the effect of silane coupling agent on the electrical properties was also studied. Electrical properties and crosslink density of epoxy/micro-silica composite were noticeably improved by addition of nano-silica and silane coupling agent, and the highest breakdown strength was obtained by addition of 0.5~5 phr of nano-silica and 2.5 phr of silane coupling agent, and the highest tensile and flexural strength were obtained by addition of 2.5 phr of nano-silica.

Electrical Properties about Thermal and Water Degradation of Epoxy Powder for Bus Duct (부스닥트용 에폭시 분체도료의 열 및 수중열화에 대한 전기적 특성)

  • Kim, Hyun-Hee;Kim, Sang-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.17-22
    • /
    • 2009
  • Epoxy powder is being in use for insulation materials widely. Especially, in cause of coating insulation can be caused electrical fire and explosion by Joul's heat. This study has been compared and examined around breakdown, arc discharge, and V-t about insulation of Epoxy powder. Also, it has been researched about insulation which is cause of electrical fire and its basic data. According to temperature change, sample KS was stable before the Tg to be about $8{\sim}10%$ decrease in the breakdown test. In case of V-t and arc discharge, it had been kept up suitable characteristic. Also, in case of electrical characteristic, sample KS has excellent capacity.

Contamination Particle and Cracking Behavior of the Anodic Oxidation in Sulfuric Acid Containing Cerium Salt (세륨염을 첨가한 황산법 양극산화피막의 오염입자 및 열크랙 거동)

  • So, Jongho;Yun, Ju-Young;Shin, Jae-Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.11-15
    • /
    • 2018
  • The parts of equipment for semiconductor are protected by anodic aluminum oxide film to prevent corrosion. This study investigated contamination particle and cracking behavior of anodic oxidation in sulfuric acid containing cerium salt. The insulating properties of the sample were evaluated by measuring the breakdown voltage. It was confirmed that the breakdown voltage was about 50% higher when the cerium salt was added, and that the breakdown voltage after the heat treatment was 55% and 35% higher at $300^{\circ}C$ and $400^{\circ}C$, respectively. After heating at $300^{\circ}C$ and $400^{\circ}C$, cracks were observed in non cerium and cerium 3mM, and more cracks occur at $400^{\circ}C$ than at $30^{\circ}C$. The amount of contamination particles generated in the plasma is about 45% less than that of non-cerium specimens.

The Effect on the Microroughness of Si Substrate by Metallic Impurity Ca (금속 불순물 Ca이 Si 기판의 표면 미세 거칠기에 미치는 영향)

  • Choe, Hyeong-Seok;Jeon, Hyeong-Tak
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.491-495
    • /
    • 1999
  • In this study, we focus on Ca contaminant which affects on the roughness Si substrate after thermal process. The initial Si substrates were contaminated intentionally by using a standard Ca solution. The contamination levels of Ca impurity were measured by TXRF and the chemical composition of that was analyzed by AES. Then we gre the thermal oxide to investigate the effect of Ca contaminants. The microroughness of the Si surface, the thermal oxide surface, and the surface after removing the thermal oxide were measured to examine the electrical characteristics. The initial substrates that were contaminated with the standard solution of Ca exhibited the contamination levels of 10\ulcorner~10\ulcorneratoms/$\textrm{cm}^2$ which was measured by TXRF. The Ca contaminants were detected by AES and exhibited the peaks of Ca, SI, C and O.After intentional contamination, the surface microroughness of this initial substrate was increased from $1.5\AA$ to 4$\AA$ as contamination levels became higher. The microroughness of the thermal oxide surfaces of both contaminated and bare Si substrates exhibits similar values. But the microroughness of the contaminated$ Si/SiO_2$ interface was increased as contamination increased. The thermal oxide of contaminated substrate exhibited the small minority carrier diffusion length, low breakdown voltage, and slightly high leakage current.

  • PDF

Biased Thermal Stress 인가에 의한 TSV 용 Cu 확산방지막 Ti를 통한 Cu drift 측정

  • Seo, Seung-Ho;Jin, Gwang-Seon;Lee, Han-Gyeol;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.179-179
    • /
    • 2011
  • 관통전극(TSV, Trough Silicon Via) 기술은 전자부품의 소형화, 고성능화, 생산성 향상을 이룰 수 있는 기술이다. Cu는 현재 배선 기술에 적용되고 있고 전기적 저항이 낮아서 TSV filling 재료로 사용된다. 하지만 확산 방지막에 의해 완벽히 감싸지지 않는다면, Cu+은 빠르게 절연막을 통과하여 Si 웨이퍼로 확산된다. 이런 현상은 절연막의 누설과 소자의 오동작 등의 신뢰성 문제를 일으킬 수 있다. 현재 TSV의 제조와 열 및 기계적 응력에 관한 연구는 활발히 진행되고 있으나 Biased-Thermal Stress(BTS) 조건하의 Cu 확산에 관한 연구는 활발하지 않는 것이 실정이다. 이를 위해 본 연구에서는 TSV용 Cu 확산 방지막 Ti에 대해 Cu+의 drift 억제 특성을 조사하였다. 실험을 위해 Cu/확산 방지막/Thermal oxide/n-type Si의 평판 구조를 제작하였고 확산 방지막의 두께에 따른 영향을 조사하기 위해 Ti의 두께를 10 nm에서 100 nm까지 변화하였으며 기존 Cu 배선 공정에서 사용되는 확산 방지막 Ta와 비교하였다. 그리고 Cu+의 drift 측정을 위해 Biased-Thermal Stress 조건(Thermal stress: $275^{\circ}C$, Bias stress: +2MV/cm)에서 Capacitance 및 Timedependent dielectric breakdown(TDDB)를 측정하였다. 그 결과 Time-To Failure(TTF)를 이용하여 Cu+의 drift를 측정할 수 있었으며, 확산 방지막의 두께가 증가할수록 TTF가 증가하였고 물질에 따라 TTF가 변화하였다. 따라서 평판 구조를 이용한 본 실험의 Cu+의 drift 측정 방법은 향후 TSV 구조에서도 적용 가능한 방법으로 생각된다.

  • PDF

Electrical and thermal properties of polyamideimide-colloid silica nanohybrid for magnetic enameled wire

  • Han, S.W.;Kang, D.P.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.428-432
    • /
    • 2012
  • Polyamidimide (PAI)-colloidal silica (CS) nanohybrid films were synthesized by an advanced sol-gel process. The synthesized PAI-CS hybrid films have a uniform and stable chemical bonding and there is no interfacial defects observed by TEM. The thermal degradation ratio of PAI-CS (10 wt%) hybrid films is delayed by 100 ℃ compared with pure PAI sample determined by on set temperature range in TGA. The dielectric constant of PAI-CS (10 wt%) hybrid films decreases with increasing CS content up to about 5 wt% but increases at higher CS content, which is not explained simply by effective medium therories (EMT). The duration time of PAI-CS (10 wt%) hybrid coil is 38 sec, which is very longer than that of pure PAI coil sample. The PAI-CS (10 wt%) hybrid film has a higher breakdown voltage resistance than the pure PAI film at surge environment and exhibits superior heat resistance. The PAI-CS (10 wt%) sample shows the advanced and stable thermal emission properties in transformer module compared with the pure PAI sample. This result illustrates that the advanced thermal conductivity and expansion properties of PAI-CS sample in the case of appropriate sol-gel processes brings the stable thermal emission in transformer system. Therefore, new PAI-CS hybrid samples with such stable thermal emission properties are expected to be used as a high functional coating application in ET, IT and electric power products.

HVDC용 나노복합 절연재료의 DC절연파괴특성 연구

  • Jeong, Ui-Hwan;Yun, Jae-Hun;Lee, Seung-Su;Im, Gi-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.155-155
    • /
    • 2009
  • This paper introduces the findings of a detailed study on breakdown voltage strength under DC voltage and the development of HVDC cable. Recently, Nano-fillers are attracting attentions of many researchers and engineers, since they seem to bring higher potentials for advancement of electrical insulating properties as nano-composites. Additives and fillers are often adopted to polymeric materials for improving insulating and machanical properties. We have improved the polymer composition and developed a new insulation material for HVDC cable. Each specimen blended at LDPE1 to antioxidant, LDPE2 to antioxidant, pure XLPE was manufactured respectively. The insulation performances of the proposed insulator were compared with specimens blended at nano powders. DC breakdown strength of LDPE1 specimen at 90[$^{\circ}C$] was higher than other specimens. The experimental results show that polar groups intorduced in moleculars chains of blended specimen plays an important role in enhancement of thermal conductivity.

  • PDF

A study on the electric breakdown of polyimide thin film fabricated by vapor deposition polymerization (진공증착중합법에 의해 제조된 폴리이미드박막의 절연파괴특성)

  • 이붕주;김형권;김종석;한상옥;박강식;김영봉;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.293-296
    • /
    • 1997
  • The experimental system used for vapor deposition polymerization (VDP) from PMDA (Pyromellitic dianhydride) and DDE (4, 4-diaminodiphenyl ether) were changed to PI (polyimide) thin films by thermal curing. The curing temperatures were 20$0^{\circ}C$, 25$0^{\circ}C$, 30$0^{\circ}C$, 35$0^{\circ}C$. When test number was 40, the electric breakdown strengths of PI were 1.21MV/cm, 3.94MV/cm, 4.61MV/cm, 4.55MV/cm according to curing temperatures.

  • PDF