• Title/Summary/Keyword: thermal barrier effect

Search Result 168, Processing Time 0.045 seconds

The Effect of Quartz Liner in Rapid Thermal Nitridation Process for Chamber Contamination Control

  • Yun, Jin-Hyeok;Park, Se-Geun;Lee, Yeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.195-195
    • /
    • 2015
  • 반도체 제조 시 ohmic contact을 형성하고, barrier metal layer형성을 위해 NH3 기체를 사용하는 rapid thermal nitridation (RTN)은 반도체 공정에 있어 매우 중요한 핵심 기술이다. 그러나 공정 진행 시 발생하는 공정 부산물에 의한 chamber오염으로 인해 매우 정확히 입사 되어야 할 thermal energy의 controllability가 저하되고 있어, 미세 공정능력 구현의 한계에 부닥치고 있다. 본 연구에서는 quartz plate liner를 적용하여 RTN 공정에서 발생하는 공정 부산물인 ammonium chloride (NH4Cl)의 chamber 표면 증착을 최소화하였고, 공정 진행 온도의 controllability를 확보하였다.

  • PDF

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length (탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향)

  • Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness (경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가)

  • Lee, Seoung Soo;Kim, Jun Seong;Jung, Yeon-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.248-255
    • /
    • 2020
  • The effects of the coating thickness on the thermal durability and thermal stability of thermal barrier coatings (TBCs) with a gradient coating thickness were investigated using a flame thermal fatigue (FTF) test and thermal shock (TS) test. The bond and topcoats were deposited on the Ni-based super-alloy (GTD-111) using an air plasma spray (APS) method with Ni-Cr based MCrAlY feedstock powder and yttria-stabilized zirconia (YSZ), respectively. After the FTF test at 1100 ℃ for 1429 cycles, the bond coat was oxidized partially and the thermally grown oxide (TGO) layer was observed at the interface between the topcoat and bond coat. On the other hand, the interface microstructure of each part in the TBC specimen showed a good condition without cracking or delamination. As a result of the TS test at 1100 ℃, the TBC with gradient coating thickness was initially delaminated at a thin part of the coating layer after 37 cycles, and the TBC was delaminated by more than 50% after 98 cycles. The TBCs of the thin part showed more oxidation of the bond coat with the delamination of topcoat than the thick part. The thick part of the TBC thickness showed good thermal stability and oxidation resistance of the bond coat due to the increased thermal barrier effect.

Experimental Analysis of Ceramic Coated High Power Brake Discs (세라믹 코팅 고에너지 제동 디스크의 마찰특성 연구)

  • 강부병;이희성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.97-107
    • /
    • 1998
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two sizes of brake discs in stop and hold braking modes. And Plasma spray coating technique was used to coat ceramic powder on the discs. In the test four commercial brake pads were coupled with discs. Ceramic coated discs had shown good stability in friction coefficient at high speed and high energy braking conditions. But they caused large pad mass wear loss compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc, it had shown fluctuating friction coefficient at high speed but a fittie pad mass wear loss compared with ceramic coated discs.

  • PDF

Determination of Optimum Condition in Plasma Spraying Process (플라즈마용사공정에서의 최적 조건 결정에 관한 연구)

  • 최경수;박동화
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.155-162
    • /
    • 1996
  • A Taguchi methodology study of the plasma spraying thermal barrier coating (TBC) layer is presented. The experiment parameters were designed by a L8-style orthogonal arrays approach. A Taguchi analysis was conduc-ted through the results of the coating properties which were affected by plasma spraying parameters. Zirconia (partially stbilized with ytrria: PSZ) was sprayed on TiAl intermetallic compound substrates, The coating layer was characterized by thickness microstructure and porosity using SEM and Image analyzer. The coating quali-ties are discussed with respect to thermal barrier effect thermal cycling test6 and adhesion strength test. An optimum condition of plasma spraying process which are derived from the Taguchi analysis could be found for high quality TBC.

  • PDF

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

Effect of Non-thermal Dielectric Barrier Discharge Plasma by Air Volume against Mycobacterium Tuberculosis (비열 유전체장벽방전 플라즈마 발생기의 풍량에 따른 결핵균 성장억제 효능)

  • Son, Eun-Soon;Kim, Yonghee;Paik, Namwon;Lee, Ilyong;Kim, Eunhwa;Park, Hae-Ryoung;Lee, Jongseok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.414-419
    • /
    • 2019
  • Objectives: The objective of this study was to evaluate the inhibitory effect of non-thermal dielectric barrier discharge (DBD) plasma by air volume against Mycobacterium tuberculosis (MTB). Methods: Plasma generators (TB-300, Shinyoung Airtec, Seongnam-si, Korea) were operated in a 2A type biosafety cabinet. The plasma generator was set to a wind flow rate of 14 ($80m^3/h$), 18 ($110m^3/h$), and 22 ($150m^3/h$), and exposure times were set to 0 hours, 3 hours, 6 hours, 9 hours, and 24 hours. Results: The inhibitory effects of plasma at air volume 14 with prolonged exposure time of three hours was 20%, 64% at six hours, 82.3% at nine hours, and 100% after 24 hours exposure. With air volume of 18, the inhibitory effects upon plasma exposure were 36% for three hours, and 100% from 24 hours. Greater air volume resulted in greater inhibition of tuberculosis bacterial growth. In particular, the maximum inhibitory effect (100%) was shown in air volume of 22 ($150m^3/h$) after three hours of plasma exposure. Conclusions: The results showed the correlating inhibitory effects of plasma on the growth of MTB in combination with increasing plasma exposure time and air volume.

Effect of thermal conductivity degradation on the behavior of high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.265-270
    • /
    • 1996
  • The temperature distribution in the pellet was obtained from beginning the general heat conduction equation. The thermal conductivity of pellet used the SIMFUEL data that made clear the effect of burnup on the thermal conductivity degradation. Since the pellet rim acts as the thermal barrier to heat flow. the pellet was subdivided into several rings in which the outer ring was adjusted to play almost the same role as the rim. The local burup in each ring except the outer ring was calculated from the power depression factor based on FASER results. whereas the rim burnup at the outer ring was achieved by the pellet averaged burnup based on the empirical relation. The rim changed to the equivalent Xe film so the predicted temperature shooed the thermal jump across the rim. The observed temperature profiles depended on linear heat generation rate. fuel burnup. and power depression factor. The thermal conductivity degradation modelling can be applied to the fuel performance code to high burnup fuel,

  • PDF

Effect of Railway Noise Barrier Shape on Solar Radiation Energy Absorption (철도 방음벽의 형상에 따른 태양복사 에너지 흡수 특성 연구)

  • Jeong, Chan Ho;Lee, Jin Woon;Jang, Yong-Jun;Kim, Jooheon;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.209-214
    • /
    • 2013
  • The present study aims to determine the optimized shape for the maximum electric energy production of building integrated photovoltaic system (BIPV) noise barrier through numerical analysis. The shape of BIPV noise barrier is one of the important factors in determining angle difference between direction vector of the sun and normal vector of the sound barrier surface. This study simulated numerically the flow and thermal fields for different angles in the range from $90^{\circ}$ to $180^{\circ}$, and from the results, the amount of isolation onto noise barrier surface was estimated along the angle between ground and top side of noise barrier. The commercial CFD code (Fluent V. 13.0) was used for calculation. It was found that the maximum amount of insolation per unit area was 19.6 MJ for $105^{\circ}$ case during a day in summer and was estimated 12.4 MJ in $150^{\circ}$ case during a day in winter. The results of the summer and winter cases showed the different tendency and this result would be useful in determining the appropriate shape of noise barrier which can be mounted under various circumstances.