• Title/Summary/Keyword: therapeutic robot

Search Result 17, Processing Time 0.021 seconds

The Effect of Robot Therapy on Upper Extremity Function in a Patient With Parkinson's Disease (로봇치료가 파킨슨병 환자의 상지 기능에 미치는 영향)

  • Lee, Inseon;Kim, Jongbae;Park, Ji-Hyuk;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.3
    • /
    • pp.59-78
    • /
    • 2018
  • Objective : The purpose of this study was to investigate the effect of robot-assisted therapy on upper extremity function. Methods : This study used a single-subject experimental A-B-A' design. Three Parkinson's disease patients took part. Each subject received a robot-assisted therapy intervention (45 min/session, 5 sessions/week for 4 weeks). Upper extremity movement was evaluated with the Reo Assessment tool in Reogo. The Jebsen-Taylor hand motor function test, Fugle-Mayer Assessment score, Box and Block Test, and Nine-hole pegboard test were assessed pre- and post-intervention. Results : After intervention, all subjects underwent 3D motion analysis of reaching function. There was overall improvement in resistance, smoothness, direction accuracy, path efficiency, initiation time, and time to moving target with robot-assisted therapy. Robot-assisted therapy may have a positive effect on upper extremity movement in Parkinson's disease. Conclusion : Robot-assisted therapy is considered an alternative in clinical occupational therapy to improve upper extremity function in Parkinson's disease.

Development of Robotic Hand Module of NRC Exoskeleton Robot (NREX) (국립재활원 외골격 로봇(NREX)의 손 모듈 개발)

  • Song, Jun-Yong;Song, Won-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.162-170
    • /
    • 2015
  • This paper describes the development of a hand module of NREX (National Rehabilitation Center Robotic Exoskeleton) designed to assist individuals with sustained neurological impairments such as stroke and spinal cord injuries. To construct a simple and lightweight hand module, the robotic hand adopts a mechanism driven by a motor and moved by two four-bar linkages. The motor facilitates the flexion-extension movements of the thumb and the other four fingers simultaneously. Thus, an individual using the robotic hand module can effectively grip and release objects related to daily life activities. The robotic hand module has been designed to cover the range of motion with respect to its link distance. This hand module can be used in therapeutic rehabilitation as well as for daily life assistance. In addition, this hand module can either be mounted on an NREX or used as a standalone module.

Effects of Intervention Using PARO on the Cognition, Emotion, Problem Behavior, and Social Interaction of Elderly People with Dementia

  • Koh, In Soon;Kang, Hee Sun
    • Research in Community and Public Health Nursing
    • /
    • v.29 no.3
    • /
    • pp.300-309
    • /
    • 2018
  • Purpose: This study aims to investigate the effects of intervention using the therapeutic robot, PARO, on the cognition, emotion, problem behavior, and social interaction of elderly people with dementia. Methods: A nonequivalent control group pretest-posttest design was used. A total of 33 elderly people with dementia living in a nursing home facility participated in the study, with 17 in the experimental group and 16 in the control group. The intervention program with PARO was administered twice a week for 6 weeks, for a total of 12 sessions. Data were collected before and after intervention, using a questionnaire, direct observation, and video recording. Results: There were statistically significant differences in positive emotions and problem behaviors between the groups. The experimental group demonstrated a significant improvement in social interaction. Conclusion: PARO intervention can be utilized as an effective nursing intervention to increase positive emotions and social interaction, as well as decrease problem behaviors, in elderly people with dementia living in nursing home facilities.

Real-Time, Simultaneous and Proportional Myoelectric Control for Robotic Rehabilitation Therapy of Stroke Survivors (뇌졸중 환자의 로봇 재활 치료를 위한 실시간, 동시 및 비례형 근전도 제어)

  • Jung, YoungJin;Park, Hae Yean;Maitra, Kinsuk;Prabakar, Nagarajan;Kim, Jong-Hoon
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • Objective : Conventional therapy approaches for stroke survivors have required considerable demands on therapist's effort and patient's expense. Thus, new robotics rehabilitation therapy technologies have been proposed but they have suffered from less than optimal control algorithms. This article presents a novel technical healthcare solution for the real-time, simultaneous and propositional myoelectric control for stroke survivors' upper limb robotic rehabilitation therapy. Methods : To implement an appropriate computational algorithm for controlling a portable rehabilitative robot, a linear regression model was employed, and a simple game experiment was conducted to identify its potential of clinical utilization. Results : The results suggest that the proposed device and computational algorithm can be used for stroke robot rehabilitation. Conclusion : Moreover, we believe that these techniques will be used as a prominent tool in making a device or finding new therapy approaches in robot-assisted rehabilitation for stroke survivors.

Effects of trunk control robot training on balance and gait abilities in persons with chronic stroke

  • Lim, Chae-gil
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Objective: To investigate the effects of training using a trunk control robot (TCR) system combined with conventional therapy (CT) on balance and gait abilities in persons with chronic stroke. Design: Two-group pretest-posttest design. Methods: Thirty-five subjects with chronic stroke were randomly assigned to either the TCR group (n=17) or the trunk extension-training (TET) group (n=18). Both groups performed CT for 30 minutes, after which the TCR group performed TCR training and the TET group performed trunk extension training for 20 minutes. Both groups performed the therapeutic interventions 3 days per week for 6 weeks. Balance ability was evaluated using the Berg Balance Scale (BBS), and the Timed Up-and-Go (TUG) test. Gait ability was measured using the 10 m Walk Test (10MWT) and the NeuroCom Smart Balance Master. Results: TCR group showed significant improvements in static balance (weight bearing) and dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width (p<0.05); step length was not significant. The TET group showed a significant partial improvement of dynamic balance (weight shifting speed, weight shifting direction, BBS, and 10MWT (p<0.05), but the improvements in static balance, TUG, gait speed, and step width and step length was not significant. Additionally, significant differences in static balance, dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width were detected between groups (p<0.05). Conclusions: TCR training combined with CT is effective in improving static and dynamic balance, as well as gait abilities in persons with chronic stroke.

Effect of Robot Assisted Rehabilitation Based on Visual Feedback in Post Stroke Pusher Syndrome (푸셔 증후군이 있는 뇌졸중 환자에서 시각적 피드백기반 로봇보조 재활치료의 효과)

  • Kim, Min-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.562-568
    • /
    • 2016
  • This study to investigated the therapeutic effect of robot-assisted rehabilitation (Lokomat) with virtual reality (VR) on Pusher syndrome (PS) after stroke. A total of 10 patients presented with PS after stroke were recruited. The participants were divided into two groups: Lokomat (n=5) and control groups (n=5). Lokomat and conventional physical therapy (CPT) were performed together in the experimental group, and the patients in the control group were treated with CPT only twice a day. One session of intervention was carried out for 30 minutes five times per week for 4 weeks. Scale for contraversive pushing (SCP), Berg balance scale (BBS), falling index (FI), and Timed up and go test (TUG) were measured before and after the intervention. The Lokomat group produced significantly better outcomes in SCP (p=0.046), BBS (p=0.046), FI (p=0.038), and TUG (p=0.038) compared with the control group after 4 weeks of intervention. In addition, there were significant correlations between SCP and BBS (p=0.024), FI (p=0.039), and TUG (p=0.030). In conclusion, Lokomat with VR more effectively aided recovery from PS after stroke, and restoration of PS symptoms was related with improvement of balance and gait function.

Flexible Loop Wheel Mechanism for Intestine Movement (탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘)

  • Im, Hyeong-Jun;Min, Hyeon-Jin;Kim, Byeong-Gyu;Kim, Su-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.