Browse > Article
http://dx.doi.org/10.22683/tsnr.2018.7.3.059

The Effect of Robot Therapy on Upper Extremity Function in a Patient With Parkinson's Disease  

Lee, Inseon (Dept. of Occupational Therapy, Gyeong-in Rehabilitation Center Hospital)
Kim, Jongbae (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
Park, Ji-Hyuk (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
Park, Hae Yean (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
Publication Information
Therapeutic Science for Rehabilitation / v.7, no.3, 2018 , pp. 59-78 More about this Journal
Abstract
Objective : The purpose of this study was to investigate the effect of robot-assisted therapy on upper extremity function. Methods : This study used a single-subject experimental A-B-A' design. Three Parkinson's disease patients took part. Each subject received a robot-assisted therapy intervention (45 min/session, 5 sessions/week for 4 weeks). Upper extremity movement was evaluated with the Reo Assessment tool in Reogo. The Jebsen-Taylor hand motor function test, Fugle-Mayer Assessment score, Box and Block Test, and Nine-hole pegboard test were assessed pre- and post-intervention. Results : After intervention, all subjects underwent 3D motion analysis of reaching function. There was overall improvement in resistance, smoothness, direction accuracy, path efficiency, initiation time, and time to moving target with robot-assisted therapy. Robot-assisted therapy may have a positive effect on upper extremity movement in Parkinson's disease. Conclusion : Robot-assisted therapy is considered an alternative in clinical occupational therapy to improve upper extremity function in Parkinson's disease.
Keywords
Parkinson's Disease; Robot-assisted therapy; Single subject design; Upper limb;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Trombly, C. A. (1989). Occupational therapy for physical dysfunction (3rd ed.). Baltimore: Williams & Wilkins.
2 Volpe, B. T., Ferraro, M., Lynch, D., Christos, P., Krol, J., & Trudell, C. (2005). Robotics and other devices in the treatment of patients recovering from stroke. Current Neurology and Neuroscience Reports, 5(6), 465-470. Doi:10.1007/s11910-005-0035-y   DOI
3 Lee, J. E., Choi, J. K., Lim, H. S., Kim, J. H., Cho, J. H., Kim, G. S., ... & Lee, J. H. (2017). The Prevalence and Incidence of Parkinson′s Disease in South Korea: A 10-Year Nationwide Population-Based Study. Journal of the Korean Neurological Association. 35(4). 191-198. doi.org/10.17340/jkna.2017.4.1   DOI
4 Bugar, C. G., Lum, P. S., Shor, P. C., & Van der Loos, H. M. (2000). Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, 37(6), 663-673.
5 Butefisch, C., Hummelsheim, H., Denzler, P., & Mauritz, K. H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. Journal of the neurological sciences, 130(1), 59-68.   DOI
6 Calne, D. (2005). A definition of Parkinson's disease. Parkinsonism & Related Disorders, 11, S39-40.   DOI
7 Carda, S., Invernizzi, M., Baricich, A., Comi, C., Croquelois, A., & Cisari C. (2012). Robotic gait training is not superior to conventional treadmill training in Parkinson disease: A single-blind randomized controlled trial. Neurorehabil Neural Repair, 26, 1027-1034.   DOI
8 Crutcher, M. D., & DeLong, M. R. (1984). Single cell studies of the primate putamen. Experimental Brain Research, 53(2), 244-258.   DOI
9 Cromwell, F. S. (1965). Occupatinal therapist manual for basic skill assessment: Primary pre-vocational evaluation. Oasadena. CA: Fair Oaks Printing Co.
10 Cromwell, F. S. (1976). Occupatinal therapist manual for basic skill assessment: Primary pre-vocational evaluation. Altadena. CA: Fair Oaks Printing Co.
11 Fasoli, S. E., Krebs, H. I., Stein, J., & Hogan, N. (2004). Robotic technology and stroke rehabilitation: Translating research into practice. Topic in Stroke Rehabilitation, 11(4), 11-19.   DOI
12 Grice, K. O., Vogel, K. A., Le, V., Mitchell, A., Muniz, S., & Vollmer, M. A. (2003). Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. American Journal of Occupational Therapy, 57(5), 570-573.   DOI
13 Hirsch, M. A., & Farley, B. G. (2009). Exercise and neuroplasticity in persons living with Parkinson's disease. European Journal of Physical and Rehabilitation Medicine, 45(2), 215-229.
14 Jebson, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J., & Howard, L. A. (1969). An objective and standardized test of hand function. Archive Physical Medicine Rehabilitation. 50, 311-319.
15 Konczak, J., Corcos, D. M., Horak, F., Poizner, H., Shapiro, M., Tuite, P., ... & Maschke, M. (2009). Proprioception and motor control in Parkinson's disease. Journal of Motor Behavior, 41(6), 543-552.   DOI
16 Kwakkel, G., Kollen, B., & Lindemen, E. (2004). Understanding the pattern of functional recovery after stroke: Facts and theories. Restorative Neurology and Neuroscience, 22(3-5), 281-299.
17 Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson's disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755-766.   DOI
18 Li, K. Y., Pickett, K., Nestrasil, I., Tuite, P., & Konczak, J. (2010). The effect of dopamine replacement therapy on haptic sensitivity in Parkinson's disease. Journal of Neurology, 257(12), 1992-1998.   DOI
19 Lo, A. C., Chang, V. C., Gianfrancesco, M. A., Friedman, J. H., Patterson, T. S., & Benedicto, D. F. (2010). Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: A pilot study. Journal of Neuroengineering and Rehabilitation, 7(1), 51.   DOI
20 Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., & Van der Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation, 83(7), 952-959.   DOI
21 Masiero, S., Celia, A., Rosati, G., & Armani, M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of Physical Medicine and Rehabilitation, 88(2), 142-149.   DOI
22 Morris, M. E. (2000). Movement disorders in people with Parkinson disease: A model for physical therapy. Physical Therapy, 80(6). 578-597.
23 Nieuwboer, A., Rochester, L., Muncks, L., & Swinnen, S. P. (2009). Motor learning in Parkinson's disease: Limitations and potential for rehabilitation. Parkinsonism and Related Disorders, 15, S53-S58.
24 Nieuwboer, A., Rochester, L., Herman, T., Vandenberghe, W., Emil, G. E., Thomaes, T., & Giladi, N. (2009). Reliability of the new freezing of gait questionnaire: Agreement between patients with Parkinson's disease and their cares. Gait and Posture, 30(4), 459-463.   DOI
25 Picelli, A., Melotti, C., Origano, F., Meri, R., Waldner, A., & Smania, N. (2013). Robot-assisted gait training versus equal intensity treasmill training in patients with mild to moderate Parkinson's disease: A randomized controlled trial. Parkinsonism and Related Disorders, 19(6), 605-610.   DOI
26 Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development, 49(4), 479-496.   DOI
27 Petzinger, G. M., Fisher, B. E., McEwen, S., Beeler, J. A., Walsh, J. P., & Jakowec, M. W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease. The Lancet Neurology, 12(7). 716-726.   DOI
28 Picelli, A., Melotti, C., Origano, F., Waldner, A., Fiaschi, A., Santilli, V., & Smania, N. (2012). Robot-assisted gait training in patients with Parkinson disease: A randomized controlled trial. Neurorehabilitation and Neural Repair, 26(4), 353-361.   DOI
29 Picelli, A., Tamburin, S., Passuello, M., Waldner, A., & Smania, N. (2014). Robot-assisted arm training in paients with Parkinson's disease: A pilot study. Journal of Neuroengineering and Rehabilitation, 11(1), 28.   DOI
30 Platz, T., Eickohf, C., Van Kaick, S., Engel, U., Pinkowski, C., Kalok, S., & Pause, M. (2005). Impairment-oriented training or Bobath therapy for severe arm paresis after stroke: A single-blind, multicentre randomized controlled trial. Clinical Rehabilitation, 19(7), 714-724.   DOI
31 Quinn, L., Busse, M., & Dal Bello-Haas, V. (2013). Management of upper extremity dysfunction in people with Parkinson disease and Huntington disease: Facilitating outcomes across the disease lifespan. Journal of Hand Therapy, 26(2), 148-155.   DOI
32 Reinkensmeye, D. J., Emken, J. L., & Cramer, S. C. (2004). Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering, 6, 497-525.   DOI
33 Ring, H., & Rosenthal, N. (2005). Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. Journal of Rehabilitation Medicine, 37(1), 32-36.   DOI
34 Schettino, L. F., Adamovich, S. V., Hening, W., Tunik, E., Sage, J., & Poizner, H. (2006). Hand preshaping in Parkinson's disease: Effects of visual feedback and medication state. Experimental Brain Research, 168(1-2), 186-202.   DOI
35 Summers, J. J., Kagerer, F. A., Garry, M. I., Hiraga, C. Y., Loftus, A., & Cauraugh, J. H. (2007). Bilateral and unilateral movement training on upper limb function in chronic stroke patients: A TMS study. Journal of the Neurological Sciences, 252(1), 76-82.   DOI
36 Sharpe, M. H., Cermak, S. A., & Sax, D. S. (1983). Motor planning in Parkinson patients. Neuropsychologia, 21(5). 455-462.   DOI
37 Smania, N., Picelli, A., Geroin, C., Munari, D., Waldner, A., & Gandolfi, M. (2013). Robot-assisted gait training in patients with Parkinson's disease. Neurodegenerative Disease Management, 3(4), 321-330.   DOI