• 제목/요약/키워드: therapeutic potential

검색결과 2,195건 처리시간 0.034초

Therapeutic effect of marine bioactive substances against periodontitis based on in vitro, in vivo, and clinical studies

  • Tae-Hee Kim;Se-Chang Kim;Won-Kyo Jung
    • Fisheries and Aquatic Sciences
    • /
    • 제26권1호
    • /
    • pp.1-23
    • /
    • 2023
  • Marine bioactive substances (MBS), such as phlorotannins, collagens, peptides, sterols, and polysaccharides, are increasing attention as therapeutic agents for several diseases due to their pharmacological effects. Previous studies have demonstrated the biological activities of MBS including antibacterial, anticoagulant, antidiabetic, antimicrobial, anti-inflammatory activities. Among numerous human diseases, periodontitis is one of the high-prevalence inflammatory diseases in the world. To treat periodontitis, several surgeries (bone grafting, flap surgery, and soft tissue graft) are usually used. However, the surgery for patients with chronic periodontitis induces several side effects, including additional inflammatory responses at the operated site, chronic wound healing, and secondary surgery. Therefore, this review assessed the most recent trends in MBS using Google Scholar, PubMed, and Web of Science search engines to develop marine-derived therapeutic agents for periodontitis. Further, we summarized the current applications and therapeutic potential of MBS to serve as a reference for developing novel technologies applied to MBS against periodontitis treatment.

Production of Therapeutic Glycoproteins throgh the Engineering of Glycosylation Pathway in Yeast

  • Roy, Samir-Kumar;Yasunori Chiba;Yoshifumi Jigami
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권4호
    • /
    • pp.219-226
    • /
    • 2000
  • The application of recombinant DNA technology to restructure metabolic net-work can change metabolite and protein products by altering the biosynthetic pathways in an organism. Although some success has been achieved, a more detailed and thorough investigation of this approach is certainly warranted since it is clear that such methods hold great potential based on the encouraging results obtained so far. In last decade, there have been tremendous advances in the field of glycobiology and the stage has been set for the biotechnological production of glycoproteins for therapeutic use. Today glycoproteins are one of the most important groups of pharmaceutical products. In this study the attempt was made to focus on identifying technologies that may have general application for modifying glycosylation pathway of the yeast cells in order to produce glycoproteins of therapeutic use. The carbohydrates of therapeutic recombinant glycoproteins play very important roles in determining their pharmacokinetic properties. A number of biological interactions and biological functions mediated by glycans are also being targeted for therapeutic manipulation in vivo. For a commercially viable production of therapeutic glycoproteins a metabolic engineering of a host cell is yet to be established.

  • PDF

Anti-tumor Effect of 4-1BBL Modified Tumor Cells as Preventive and Therapeutic Vaccine

  • Hong Sung Kim
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.312-316
    • /
    • 2022
  • We have previously reported that genetically modified tumor cells with 4-1BBL have anti-cancer effects in a CT26 mouse colorectal tumor model. In this study, genetically modified tumor cells with 4-1BBL were evaluated for their potential as candidates for preventive and therapeutic cancer vaccine. To identify the effect of preventive and therapeutic vaccine of genetically modified tumor cells with 4-1BBL, tumor growth pattern of CT26-4-1BBL as a cancer vaccine was examined compared to CT26-beta-gal. In therapeutic vaccination, CT26-WT was inoculated into mice and then vaccinated mice with doxorubicin (Dox)-treated CT26-beta-gal and CT26-4-1BBL (single or three times). Triple vaccination with Dox-treated tumor cell inhibited tumor growth compared to single vaccination. Vaccination with CT26-4-1BBL showed an efficient tumor growth inhibition compared to vaccination with CT26-beta-gal. For preventive vaccination, Dox-treated CT26-beta-gal and CT26-4-1BBL was vaccinated into mice with three times and then administered mice with CT26-WT. Preventive vaccination with CT26-4-1BBL showed no tumor growth. Preventive vaccination with CT26-beta-gal also led to tumor-free mice. These results suggest that genetically modified tumor cells with 4-1BBL can be used as therapeutic or preventive cancer vaccine.

Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis

  • Kim, Suji;Lim, Jae Hyang;Woo, Chang-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • 제37권4호
    • /
    • pp.269-276
    • /
    • 2020
  • Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis

  • Jang, Yu Jin;An, Su Yeon;Kim, Jong-Hoon
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.58-59
    • /
    • 2017
  • The beneficial paracrine roles of mesenchymal stem cells (MSCs) in tissue repair have potential in therapeutic strategies against various diseases. However, the key therapeutic factors secreted from MSCs and their exact molecular mechanisms of action remain unclear. In this study, the cell-free secretome of umbilical cord-derived MSCs showed significant anti-fibrotic activity in the mouse models of liver fibrosis. The involved action mechanism was the regulation of hepatic stellate cell activation by direct inhibition of the $TGF{\beta}$/Smad-signaling. Antagonizing the milk fat globule-EGF factor 8 (MFGE8) activity blocked the anti-fibrotic effects of the MSC secretome in vitro and in vivo. Moreover, MFGE8 was secreted by MSCs from the umbilical cord as well as other tissues, including teeth and bone marrow. Administration of recombinant MFGE8 protein alone had a significant anti-fibrotic effect in two different models of liver fibrosis. Additionally, MFGE8 downregulated $TGF{\beta}$ type I receptor expression by binding to ${\alpha}v{\beta}3$ integrin on HSCs. These findings revealed the potential role of MFGE8 in modulating $TGF{\beta}$-signaling. Thus, MFGE8 could serve as a novel therapeutic agent for liver fibrosis.

High NDRG3 expression facilitates HCC metastasis by promoting nuclear translocation of β-catenin

  • Shi, JiKui;Zheng, HongZhen;Yuan, LingYan
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.451-456
    • /
    • 2019
  • NDRG1 has been reported to exert pivotal roles in tumor progression and metastasis via Wnt/${\beta}$-catenin signaling pathway. However, little is known about the role of NDRG3 in hepatocarcinogenesis despite its classification in the same subfamily of NDRG1. The present study was aimed to characterize the expression pattern and understand the biological roles of NDRG3 in hepatocarcinogenesis, as a means to exploit its therapeutic potential. It was observed that NDRG3 was up-regulated in HCC tissues and higher NDRG3 expression was associated with significantly shorter overall survival. Furthermore, a lower level of NDRG3 exhibited marked positive correlation with metastasis-free survival. In vitro and in vivo experiments revealed that knock-down of NDRG3 inhibits HCC metastasis and angiogenesis. We further demonstrated that activation of WNT/${\beta}$-catenin signaling and enhanced CSC-like properties were responsible for NDRG3-mediated promoting effect on HCC. In conclusion, the principal findings demonstrated that high NDRG3 expression facilitates HCC metastasis via regulating the turnover of ${\beta}$-catenin, as well as provides a potential therapeutic target for future therapeutic interventions.

Oleanolic Acid Provides Neuroprotection against Ischemic Stroke through the Inhibition of Microglial Activation and NLRP3 Inflammasome Activation

  • Sapkota, Arjun;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.55-63
    • /
    • 2022
  • Oleanolic acid (OA), a natural pentacyclic triterpenoid, has been reported to exert protective effects against several neurological diseases through its anti-oxidative and anti-inflammatory activities. The goal of the present study was to evaluate the therapeutic potential of OA against acute and chronic brain injuries after ischemic stroke using a mouse model of transient middle cerebral artery occlusion (tMCAO, MCAO/reperfusion). OA administration immediately after reperfusion significantly attenuated acute brain injuries including brain infarction, functional neurological deficits, and neuronal apoptosis. Moreover, delayed administration of OA (at 3 h after reperfusion) attenuated brain infarction and improved functional neurological deficits during the acute phase. Such neuroprotective effects were associated with attenuation of microglial activation and lipid peroxidation in the injured brain after the tMCAO challenge. OA also attenuated NLRP3 inflammasome activation in activated microglia during the acute phase. In addition, daily administration of OA for 7 days starting from either immediately after reperfusion or 1 day after reperfusion significantly improved functional neurological deficits and attenuated brain tissue loss up to 21 days after the tMCAO challenge; these findings supported therapeutic effects of OA against ischemic stroke-induced chronic brain injury. Together, these findings showed that OA exerted neuroprotective effects against both acute and chronic brain injuries after tMCAO challenge, suggesting that OA is a potential therapeutic agent to treat ischemic stroke.

호흡기계 작용 약물의 치료군 중복처방 평가기준 개발 (Therapeutic Duplication Criteria Development of Respiratory System Drugs)

  • 최경업;손현순;김남효;신현택;이영숙
    • 약학회지
    • /
    • 제56권2호
    • /
    • pp.126-135
    • /
    • 2012
  • Purpose: To develop therapeutic duplication criteria for the drugs used for respiratory diseases. Method: Therapeutic duplication was defined as "more than 2 drug ingredient-usage in which each has the same therapeutic effect and combination therapy does not confer additional therapeutic benefit". Respiratory system drugs approved in Korea were examined for the study. The WHO's Anatomical Therapeutic Chemical Classification System was used for grouping of the corresponding drug ingredients. The principles and recommendations on combination usage or multiple drug regimens were reviewed by using the clinical practice guidelines, textbooks, product labelings, and clinical articles. Clinical expert group consultation was performed and expert opinions were incorporated into the final criteria. Results: Nine hundred sixty two drug products with Korean Food and Drug Administration classification codes of 141, 149, 222, and 229 were evaluated, of which 87 active ingredients were composed. The drug ingredients were classified into 12 groups (antihistamines, oral nasal decongestants, leukotriene receptor antagonists, inhaled anticholinergics, inhaled corticosteroids, oral ${\beta}2$-agonists, long-acting ${\beta}2$-agonists, short-acting ${\beta}2$-agonists, xanthines, antiallergics, mucolytics and cough suppressants). The use of more than 2 drug ingredients including the same group was therapeutic duplication, and thus combination should be recommended not to be used. Conclusion: Twelve drug groups were identified as therapeutic duplication criteria. Combination therapy within each group should not be used otherwise therapeutic benefits outweigh potential risks.

Traditional Korean medicine theory based-therapeutic potential of Gung-Gwi-Tang on postpartum obesity: psychosocial aspects of postpartum obesity

  • Kim, Jeong-Hwa;Moon, Phil-Dong
    • 셀메드
    • /
    • 제2권3호
    • /
    • pp.24.1-24.5
    • /
    • 2012
  • Obesity is psychological and socioeconomic problems as well as health problems related to physical disease and disorder. The obesity epidemic, including a marked increase in the prevalence of obesity among pregnant women, represents a critical public health problem throughout the world. Gung-Gui-Tang (GGT), a prescription of traditional Korean medicine, has been used to treat dizziness due to loss of blood as well as static blood after childbirth. However, the therapeutic potential of GGT on postpartum obesity has not been fully elucidated in an experimental model. In our research, GGT inhibited the increases of body weight and adipose tissues in postpartum mice fed a high-fat diet. GGT also inhibited the elevations of plasma lipid profiles such as triglyceride, low-density lipoprotein cholesterol, total cholesterol, and glutamate pyruvate transaminase. Overall, these results provide evidence that GGT can help to inhibit postpartum obesity and open new perspective to recover the shape of mother into the moment of conception.