Production of Therapeutic Glycoproteins throgh the Engineering of Glycosylation Pathway in Yeast

  • Roy, Samir-Kumar (Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Higashi 1-1, Tsukuba, Ibaraki 305-8566, Japan) ;
  • Yasunori Chiba (Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Higashi 1-1, Tsukuba, Ibaraki 305-8566, Japan) ;
  • Yoshifumi Jigami (Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Higashi 1-1, Tsukuba, Ibaraki 305-8566, Japan)
  • Published : 2000.07.01

Abstract

The application of recombinant DNA technology to restructure metabolic net-work can change metabolite and protein products by altering the biosynthetic pathways in an organism. Although some success has been achieved, a more detailed and thorough investigation of this approach is certainly warranted since it is clear that such methods hold great potential based on the encouraging results obtained so far. In last decade, there have been tremendous advances in the field of glycobiology and the stage has been set for the biotechnological production of glycoproteins for therapeutic use. Today glycoproteins are one of the most important groups of pharmaceutical products. In this study the attempt was made to focus on identifying technologies that may have general application for modifying glycosylation pathway of the yeast cells in order to produce glycoproteins of therapeutic use. The carbohydrates of therapeutic recombinant glycoproteins play very important roles in determining their pharmacokinetic properties. A number of biological interactions and biological functions mediated by glycans are also being targeted for therapeutic manipulation in vivo. For a commercially viable production of therapeutic glycoproteins a metabolic engineering of a host cell is yet to be established.

Keywords

References

  1. Eur. J. Biochem v.218 Protein glycosylation-Srtuctural and funtional aspects Lis, H;N. Sharon
  2. Annu. Rev. Biochem v.54 Assembly of aspar-agien-linked oligosaccharides Kornfeld R;S. Kornfeld
  3. Crit. Rev. Biochem. Mol. Biol. v.33 Concept and principals of O-linked glycosylation Van den Steen P;P. M. Rudd;R. A. Dwek;G. Openakker
  4. Annu. Rev. Biochem. v.50 Synthesis and proc-essing of asparagine-linked oligosaccharides Hubband S. G.;R. J. Ivatt
  5. Endocri-nology v.116 The role of carbohydrate in erythropoietin action Dordal, M. S.;F. F. Wang;E. Goldwasser
  6. Eur. J. Biochem. v.188 The role of carbonhydrate in recombinant human erythropoietin Tsuda, E.;G. Kawanishi;M. Ueda ;S. Masuda;R. Sa-saki
  7. J. Bio. Chem. v.256 Role of sugar chains in the in vitro biological ac-tivity of human erythopoietin produced in recombinant chinise hamster overy cells Takeuchi M.;S. Takashi;M. Shimada;A. Kobata
  8. J. Biol. Chem. v.252 Purifi-cation of human erythriopoietin Miyake T.;C. K. Kung;E. Goldwasser
  9. Nature v.313 Jacob, K;C. Shoemaker;R. Rudersdorf;S. Neil;R. Kaufman;A. Mufson;J. Jones;R. Hewick;E. Fritch;M. Kawakita;T. Shimizu;T. Miyake
  10. Bio/Technology v.6 Production of recombinant human erythropoietin in mammalian cells: Host-cell de-pendency of the biological activity of the clones glyco-protein Goto, M;K. Akai;A. Murakami;C. Hashimoto;E. Tsuda;M. Ueda;G. Kawanishi;N. Takahashi;A. Ishmoto;H. Chiba;R. Sasaki
  11. Ann. NY Acad. Sci. v.413 Overproduction of proteins in recom-binant organisms Klotz, L. C.
  12. Mol. Cell. Biol. v.5 Pichia pastoris as a host system for transfor-mations Cregg. J. M.;K. J. Barringer;A. Y. Hessler,;K. R. Mad-den
  13. J. Bio. Chem. v.273 Produc-tion of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cere-visiae Chiba, Y.;M. Suzuki;S. Yoshida;A. Yoshida;H. Ikenaga;M. Takeuchi;Y. Jigami;E. Ichishima
  14. EMBO J. v.11 OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of aspar-agine-linked oligosaccharides Nakayama, K.;T. Nagasu;Y. Shimma;J. Kuromitsu;Y. Jigami
  15. Glycobiology v.6 Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Sac-charomyces cerevisiae Odani, T;Y. Shimma;A. Tanaka;Y. Jigami
  16. Yeast v.8 Isolation of new temperature-sensitive mutants of Sac-charomyces cerevisiae deficient in mannose outer chain elongation Nagasu T.;Y. Shimma;Y. Nakanishi;J. Kuromitsu;K. Iwama;K. Nakayama;K. Suzuki;Y. Jigami
  17. J. Biol. Chem. v.248 Genetic control of yeast mannan structure. Isola-tion and characterization of mannan mutants Raschke W. C.;K. A, Kern;C. Antatils;C. E. Ballou
  18. Proc. Natl. Acad. Sci USA v.72 Yeast mannoprotein biosynthsis: solubilization and selective assay of four mannosyltransferases Nakajima T.;C. E. Ballou
  19. Proc. Nat. Acad. Sci. USA v.91 Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of se-creted proteins Yip C. L.;S. K. Welch;F. Klebl;T. Gilbert;P. Seidel;F. J. Grant;P. J. O'Hara;V. L. MacKay
  20. J. Biol. Chem. v.256 Lysosomal enzyme targeting Reitman M. L.;S. Kornfeld
  21. J. Biol. Chem. v.272 MNN6, a member of the KRE2/MNT1 family. is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae Wang, X. H.;K. Nakayama;Y. Shimma;A. Tanaka;Y. Jigami
  22. Biochim. Biophys. Acta v.6 Mannosylphosphate transfer to yeast mannan Jigami, Y.;T. Odani
  23. Glycobiology v.4 Glycosidases of the asparagine-linked oligosaccharide processing pathway Moremen K. W.;R. B. Trimble;A. Herscovics
  24. Biophys. Acta. v.1263 Molecular cloning and nucleotide sequence fo the genomic DNA for 1,2-α-D-mannosidase gene, msdc from penicillium citrium Yoshida, T.;E. Ichshima
  25. J. Biol. Chem. v.269 Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals Herscovics, A.;J. Schneikert;A. Athanassiadis;K. W. Moremen
  26. J. Biol. Chem. v.269 Isolation and expression of murine and rabbit cDNAs encoding an alpha 1,2-mannosidase involved in the processing of asparagine-linked oligosac-charides Lal, A.;J. S.;Schutzbach;W. T. Forsee;P. J. Neame;K. W. Moremen
  27. Molecular cloning, chromosomal mapping and tis-sue-specific expression of a novel human [alpha]1,2-mannosidase gene involved in N-glycan maturation Gly-cobiology v.6 Tremblay, L. O.;N. Campbelll Dyke;A. Herscovich
  28. J. Biol. Chem v.266 Glycoprotein biosynthsis in Saccharomyces cere-visiae. Isolation and characterization of the gene encod-ing a specific processing alpha-mannosidas Camirand, A.;A. Heysen;B. Grondin;A. Herscovics
  29. Biochem. Biophys. Acta. v.1253 Molecular cloning and nucleotide sequence of the 1,2-alpha-D-mannosidase gene.msdS, from Aspergillus saitoi and ex-pression fo the gene in yeast cells Inoue, T.;T. Yoshida;E. Ichishima
  30. Biochem. Biophys. Res. Commun v.238 Five crucial carboxyl residues of 1,2-alpha-mannosidase from Asper-gillus saitoi (A. phoenicis), a food microorganism, are identified by site-directed mutagenesis Fujita, A.;T. Yashida;E. Ichishima
  31. EMBO J. v.7 Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compart-ment Pelham, H. R.
  32. Nature v.348 A human homo-logue of the yeast HDEL receptor Lewis, M. J.;H. R. Pelham
  33. Cell v.61 ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secre-tory pathway Semenza, J.;K. G. Hardwick;N. Dean;H. R. Pel-ham
  34. Glycobiology v.9 Expression and characterization of rat UDP-N-acetylglucosamine: α-3-D-mannoside β1,2-N-acetylglucosaminyltransferase I in Saccharomyces cerevisiae Yoshida, S.;M. Suzuki;S. Yamano;M. Takeuchi;Ikenage, H;Kioka, N.;Sakai, H.;Komano T.
  35. Proc. Natl. Acad. Sci. USA v.93 Molecular cloning of the Golgi apparatus uridine diphos-phate-N-acetylglucosamine transporter from Kluyvero-myces lactis Abeijon, C.;P. W. Robbins;C. B. Hirschberg
  36. J. Biol. Chem. v.271 A mutant yeast deficient in Golgi transport of uridine diphosphate N-acetylglucosamine Aceijon C;E. C. Mandon;P. W. Robbins;C. B. Hirschberg
  37. Eur. J. Biochem. v.223 Functional charac-terization of carrier-mediated transport of uridine di-phosphate N-acetylglucosamine across the endoplasmic reticulum membrane Bossuyt X.;N. Blanckaert
  38. J. Bio.Chem. v.275 Characterization of yeast Yea4p, a uridine diphosphate-N-acetylglucosamine transporter localized in the endo-plasmic reticulum and required for chitin synthesis Roy, S. K.;Y. Chiba;M. Takeuchi;Y. Jigami
  39. J. Biochem. v.126 Molecular cloning and function ex-pression of the human Glogi UDP-N-acetylglucosamine transporter Ishisa, N.;S. Yoshioka;Y. Chiba;M. Takeuchi;M. Kawakita
  40. Eur. J. Biochem. v.231 The human UDP-N-acetylglucosamine: alpha-6-D-mannoside-beta-1,2-N-acetlyglucosaminyltransferse II gene (MGAT2). Cloning of genemic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein Tan, J.;A. F. D'Agostro;B. Bendiak;F. Reck;M. Sarker;J. A. Squire;P. Leong;H. Schachter
  41. Eur. J. Biochem. v.212 Purification and characterization of recombinant human β-1,4 galactosyltransferase ex-pressed in Saccharomyces cerevisiae Krezdorn C. H.;G.Watzele;R. B. Kleene;S. X.;Ivanor;E. G. Berger
  42. J. Biol. Chem. v.271 Glogi localization and in vivo activity of a mammalian glyco-syltransferase (human beta 1,4-galactosyltransferase) in yeast Schwientek, T.;H. Narimatsu;J. Ernst
  43. J. Biol. Chem. v.273 Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galatosy-lation and in vitro transport assay Roy, S. K.;T. Yoko-o;H. Ikenage;Y. Jigami
  44. Eur. J. Biochem. v.257 Differences in in vivo acceptor spencificity of two galactosytransferases, the gmh3+ and gma12+ geneproducts from Schizosac-charomyces pombe Yoko-o, T.;S. K. Roy;Y. Jigami
  45. J. Biochem. v.120 Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary DNAs belong to the nucleo-tide-sugar transporter gene family Ishida, N.;N. Miura;S. Yoshioka;M. Kawakita
  46. J. Biochem. v.120 Human UDP-galactose translocator: molecular cloning of a comple-mentary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator Miura, N.;N. Ishida;M. Hoshino;M. Yamauchi;T. Hara;D. Ayusawa;M. Kawakita
  47. Biochem. Biophys. Res. Commun. v.232 The Schizosaccharomyces pombe gms1+ gene en-codes an UDP-galactose transporter homologue required for protein galactosylation Tabuchi M.;N. Tanaka;S. Iwahara;K. Takegawa
  48. J. Biochem. v.122 Expression of the human UDP-galactose transporter in the Glogi membranes fo murine Had-1 cells that lack the endogenous transporter Yoshika, S.;G. H. Sun-Wada;N. Ishida;M. Ka-wakita
  49. J. Biol. Chem. v.272 Functional expression of the murine Golgi CMP-sialic acid transporter in Saccharomyces cere-visiae Berninsone P.;M. Eckhardt;R. Gerardy-Schahn;C. B. Hirschberg
  50. J. Biochem. v.123 Functional expression of the Human UDP-Galactose Transporter in the yeast Saccharomyces cere-visiae Sun-Wada, G. H.;S. Yoshioka;N. Ishida;M. Ka-wakita
  51. Glycobiology v.9 Coexpression of alpha1,2 galactosyltransferase and UDP-galactose transporter efficiently galactosylates N-and O-glycans in Saccharomyces cerevisiae Kainuma, M.;N. Ishida;T. Yoko-O;S. Yoshioka;M. Ta-keuchi;M. Kawakita;Y. Jigami