• 제목/요약/키워드: therapeutic potential

검색결과 2,195건 처리시간 0.026초

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

  • Jo, Ukhyun;Kim, Hyungjin
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.669-676
    • /
    • 2015
  • Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconianemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.

Pharmacokinetics of DA-3021 (mono-PEGylated recombinant human interferon ($\alpha$-2a) after Subcutaneous Administrations to Experimental Animals

  • Jo, Yeong-Woo;Kim, Won-Geun;Choi, Yun-Kyu;Jeon, Hyun-Kyu;Kim, Dong-Hwan;Park, Beom-Soo;Lee, Sung-Hee;Kim, Won-Bae;Youn, Yu-Seok
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.424.1-424.1
    • /
    • 2002
  • Interferon has therapeutic potential for a wide range of infectious and proliferative disorders such as chronic hepatitis C and malignant melanoma. However. it has some therapeutic problems as other protein therapeutics do. A variety of approaches have been developed to circumvent these problems. Among them. the attachment of a polyethylene glycol (PEG) moiety 10 interferon is considered as one of the most promising solutions for its ability of extending the plasma residence time. (omitted)

  • PDF

Kidney protective potential of lactoferrin: pharmacological insights and therapeutic advances

  • Zahan, Md. Sarwar;Ahmed, Kazi Ahsan;Moni, Akhi;Sinopoli, Alessandra;Ha, Hunjoo;Uddin, Md Jamal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.1-13
    • /
    • 2022
  • Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.

Crystal Structure of p97-N/D1 Hexamer Complexed with FAF1 UBX Domain

  • Wonchull Kang
    • 대한화학회지
    • /
    • 제67권5호
    • /
    • pp.348-352
    • /
    • 2023
  • p97, a universally conserved AAA+ ATPase, holds a central position in the ubiquitin-proteasome system, orchestrating myriad cellular activities with significant therapeutic implications. This protein primarily interacts with a diverse set of adaptor proteins through its N-terminal domain (NTD), which is structurally located at the periphery of the D1 hexamer ring. While there have been numerous structural elucidations of p97 complexed with adaptor proteins, the stoichiometry has remained elusive. In this work, we present the crystal structure of the p97-N/D1 hexamer bound to the FAF1-UBX domain at a resolution of 3.1 Å. Our findings reveal a 6:6 stoichiometry between the p97 hexamer and FAF1-UBX domain, deepening our understanding from preceding structural studies related to p97-NTD and UBX domain-containing proteins. These insights lay the groundwork for potential therapeutic interventions addressing cancer and neurodegenerative diseases.

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells

  • Im, Jin Young;Min, Woo-Kie;Park, Min Hee;Kim, NamOh;Lee, Jong Kil;Jin, Hee Kyung;Choi, Je-Yong;Kim, Shin-Yoon;Bae, Jae-Sung
    • BMB Reports
    • /
    • 제47권8호
    • /
    • pp.439-444
    • /
    • 2014
  • Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.

Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus

  • Uyangaa, Erdenebileg;Patil, Ajit Mahadev;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • 제14권4호
    • /
    • pp.187-200
    • /
    • 2014
  • Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, $CD4^+$ Th1 T cells producing IFN-${\gamma}$ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.

상안검 피지선암의 수술후 방사선 치료 1례 (Postoperative Radiotherapy for Sebaceous Carcinoma of the Upper Eyelid)

  • 정수미;최병옥;최일봉;신경섭;변준희
    • 대한두경부종양학회지
    • /
    • 제11권1호
    • /
    • pp.36-40
    • /
    • 1995
  • Sebaceous carcinomas of the eyelids are uncommon but lethal tumors. Lesions are usually seen in the elderly, predominantly women. The meibomian glands of the tarsus are the most frequent site of origin. Less commonly, the tumor arises in other sebaceous glands, e.g., the gland of Zeis, eyebrow or caruncle. Regardless of the location, sebaceous malignancies must be considered aggressive neoplasms with a potential for regional and distant metastasis. Diagnosis may be difficult, given the low incidence and inconsistencies in histopathologic classification. Treatment requires wide surgical excision with removal of involved regional lymph nodes and exenteration is reserved for those patients with orbital involvement or diffuse intraepithelial neoplasia. Opinions are divided regarding the use of postoperative irradiation or chemotherapy. Recently we experienced 46-year-old male patient with a 12-month history of painless, firm nodule and conjunctivitis due to sebaceous carcinoma of the left upper eyelid. After surgery, serial sections of the entire conjunctiva and eyelids showed a positive cut margin in medial and lateral border. We report herein this patient that supports irradiation as the postoperative treatment of these tumors in selected patients with a review of literatures.

  • PDF

유근피약침액이 Mouse 관절의 염증과 인지질 활성에 미치는 영향 (The Effect of Ulmus davidiana Planch Pharmacopuncture on Joint Inflammation and Metabolism of Phospholipid in Mice)

  • 황종순;김유종;김은정;조현석;이승덕;김갑성;김경호
    • Journal of Acupuncture Research
    • /
    • 제29권3호
    • /
    • pp.55-65
    • /
    • 2012
  • Objectives : The purpose of this study was find out the therapeutic effects of Ulmus davidiana Planch pharmacopuncture(UPP) on the mice with collagen-induced rheumatoid arthritis. Methods : UPP was prepared and tested for therapeutic potential of rhematoid arthritis by measuring the inhibition of cyc1ooxgenase-2(COX-2) and phospholipase A2(PLA2) activities in mice. Results : UPP showed therapeutic effects on collagen-induced rheumatoid arthritis on week 8 and week 9. UPP also inhibited Freund's complete adjuvant induced chronic rheumatoid arthritis in mice. UPP showed significant inhibition of type I and type II PLA2 activities in a dose dependent manner. However, PGE2 Production was not decreased with UPP and lipopolysaccharide-induced COX-2 protein expression was not inhibited by UPP. Conclusions : These results suggest that UPP has an therapeutic effects on drug induced-rheumatoic arthritis by inhibiting PLA2 activity.

Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer

  • Lim, Dansaem;Do, Yeojin;Kwon, Byung Su;Chang, Woochul;Lee, Myeong-Sok;Kim, Jongmin;Cho, Jin Gu
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.291-298
    • /
    • 2020
  • Tumor angiogenesis is an essential process for growth and metastasis of cancer cells as it supplies tumors with oxygen and nutrients. During tumor angiogenesis, many pro-angiogenic factors are secreted by tumor cells to induce their own vascularization via activation of pre-existing host endothelium. However, accumulating evidence suggests that vasculogenic mimicry (VM) is a key alternative mechanism for tumor vascularization when tumors are faced with insufficient supply of oxygen and nutrients. VM is a tumor vascularization mechanism in which tumors create a blood supply system, in contrast to tumor angiogenesis mechanisms that depend on pre-existing host endothelium. VM is closely associated with tumor progression and poor prognosis in many cancers. Therefore, inhibition of VM may be a promising therapeutic strategy and may overcome the limitations of anti-angiogenesis therapy for cancer patients. In this review, we provide an overview of the current anti-angiogenic therapies for ovarian cancer and the current state of knowledge regarding the links between microRNAs and the VM process, with a focus on the mechanism that regulates associated signaling pathways in ovarian cancer. Moreover, we discuss the potential for VM as a therapeutic strategy against ovarian cancer.

수면장애에서 비침습적 뇌자극술의 치료 효과 고찰: 경두개자기자극술과 경두개직류전기자극술을 중심으로 (A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders)

  • 김신혜;이수지;임수미;윤수정
    • 수면정신생리
    • /
    • 제28권2호
    • /
    • pp.53-69
    • /
    • 2021
  • Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.