Browse > Article
http://dx.doi.org/10.4110/in.2014.14.4.187

Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus  

Uyangaa, Erdenebileg (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Patil, Ajit Mahadev (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Eo, Seong Kug (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Publication Information
IMMUNE NETWORK / v.14, no.4, 2014 , pp. 187-200 More about this Journal
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, $CD4^+$ Th1 T cells producing IFN-${\gamma}$ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.
Keywords
Herpes simplex virus; Mucosal infection; Innate immunity; Adaptive immunity; Toll-like receptors; Type I IFN receptors;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Del, C. J., M. Lindqvist, M. Cuello, M. Backstrom, O. Cabrerra, J. Persson, O. Perez, and A. M. Harandi. 2010. Intranasal immunization with a proteoliposome-derived cochleate containing recombinant gD protein confers protective immunity against genital herpes in mice. Vaccine 28: 1193-1200.   DOI   ScienceOn
2 Cortesi, R., L. Ravani, F. Rinaldi, P. Marconi, M. Drechsler, M. Manservigi, R. Argnani, E. Menegatti, E. Esposito, and R. Manservigi. 2013. Intranasal immunization in mice with non-ionic surfactants vesicles containing HSV immunogens: a preliminary study as possible vaccine against genital herpes. Int. J. Pharm. 440: 229-237.   DOI   ScienceOn
3 Chiuppesi, F., L. Vannucci, L. A. De, M. Lai, B. Matteoli, G. Freer, R. Manservigi, L. Ceccherini-Nelli, F. Maggi, M. Bendinelli, and M. Pistello. 2012. A lentiviral vector-based, herpes simplex virus 1 (HSV-1) glycoprotein B vaccine affords cross-protection against HSV-1 and HSV-2 genital infections. J. Virol. 86: 6563-6574.   DOI
4 Dudley, K. L., N. Bourne, and G. N. Milligan. 2000. Immune protection against HSV-2 in B-cell-deficient mice. Virology 270: 454-463.   DOI   ScienceOn
5 Morrison, L. A., L. Zhu, and L. G. Thebeau. 2001. Vaccineinduced serum immunoglobin contributes to protection from herpes simplex virus type 2 genital infection in the presence of immune T cells. J. Virol. 75: 1195-1204.   DOI   ScienceOn
6 Bettelli, E., T. Korn, M. Oukka, and V. K. Kuchroo. 2008. Induction and effector functions of T(H)17 cells. Nature 453: 1051-1057.   DOI   ScienceOn
7 Suryawanshi, A., T. Veiga-Parga, N. K. Rajasagi, P. B. Reddy, S. Sehrawat, S. Sharma, and B. T. Rouse. 2011. Role of IL-17 and Th17 cells in herpes simplex virus-induced corneal immunopathology. J. Immunol. 187: 1919-1930.   DOI
8 Lund, J. M., M. M. Linehan, N. Iijima, and A. Iwasaki. 2006. Cutting Edge: Plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J. Immunol. 177: 7510-7514.   DOI
9 Bryant-Hudson, K. M., and D. J. Carr. 2012. PD-L1-expressing dendritic cells contribute to viral resistance during acute HSV-1 infection. Clin. Dev. Immunol. 2012: 924619.
10 Lund, J., A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki. 2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198: 513-520.   DOI   ScienceOn
11 Shen, H., and A. Iwasaki. 2006. A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODNbased vaginal microbicide. J. Clin. Invest. 116: 2237-2243.   DOI   ScienceOn
12 Mott, K. R., D. Underhill, S. L. Wechsler, T. Town, and H. Ghiasi. 2009. A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages. Virol. J. 6: 56.   DOI   ScienceOn
13 Swaminathan, S., X. Hu, X. Zheng, Y. Kriga, J. Shetty, Y. Zhao, R. Stephens, B. Tran, M. W. Baseler, J. Yang, R. A. Lempicki, D. Huang, H. C. Lane, and T. Imamichi. 2013. Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties. Biochem. Biophys. Res. Commun. 434: 228-234.   DOI   ScienceOn
14 Mott, K. R., D. Gate, M. Zandian, S. J. Allen, N. K. Rajasagi, R. N. van, S. Chen, M. Arditi, B. T. Rouse, R. A. Flavell, T. Town, and H. Ghiasi. 2011. Macrophage IL-12p70 signaling prevents HSV-1-induced CNS autoimmunity triggered by autoaggressive $CD4^+$ Tregs. Invest Ophthalmol. Vis. Sci. 52: 2321-2333.   DOI
15 Zolini, G. P., G. K. Lima, N. Lucinda, M. A. Silva, M. F. Dias, N. L. Pessoa, B. P. Coura, C. T. Cartelle, R. M. Arantes, E. G. Kroon, and M. A. Campos. 2014. Defense against HSV-1 in a murine model is mediated by iNOS and orchestrated by the activation of TLR2 and TLR9 in trigeminal ganglia. J. Neuroinflammation. 11: 20.   DOI   ScienceOn
16 Wojtasiak, M., D. L. Pickett, M. D. Tate, S. L. Londrigan, S. Bedoui, A. G. Brooks, and P. C. Reading. 2010. Depletion of $Gr-1^+$, but not $Ly6G^+$, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. J. Gen. Virol. 91: 2158-2166.   DOI   ScienceOn
17 Iijima, N., L. M. Mattei, and A. Iwasaki. 2011. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl. Acad. Sci. U. S. A 108: 284-289.   DOI   ScienceOn
18 Parr, M. B., and E. L. Parr. 2000. Immunity to vaginal herpes simplex virus-2 infection in B-cell knockout mice. Immunology 101: 126-131.   DOI
19 Milligan, G. N. 1999. Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. J. Virol. 73: 6380-6386.
20 Molesworth-Kenyon, S. J., N. Popham, A. Milam, J. E. Oakes, and R. N. Lausch. 2012. Resident corneal cells communicate with neutrophils leading to the production of IP-10 during the primary inflammatory response to HSV-1 infection. Int. J. Inflam. 2012: 810359.
21 Li, J., L. Ye, X. Wang, S. Hu, and W. Ho. 2012. Induction of interferon-gamma contributes to Toll-like receptor 3-mediated herpes simplex virus type 1 inhibition in astrocytes. J. Neurosci. Res. 90: 399-406.   DOI   ScienceOn
22 Ghiasi, H., S. Cai, G. C. Perng, A. B. Nesburn, and S. L. Wechsler. 2000. The role of natural killer cells in protection of mice against death and corneal scarring following ocular HSV-1 infection. Antiviral Res. 45: 33-45.   DOI   ScienceOn
23 Lehmann, C., M. Zeis, and L. Uharek. 2001. Activation of natural killer cells with interleukin 2 (IL-2) and IL-12 increases perforin binding and subsequent lysis of tumour cells. Br. J. Haematol. 114: 660-665.   DOI   ScienceOn
24 Ashkar, A. A., and K. L. Rosenthal. 2003. Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J. Virol. 77: 10168-10171.   DOI   ScienceOn
25 Kassim, S. H., N. K. Rajasagi, X. Zhao, R. Chervenak, and S. R. Jennings. 2006. In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J. Virol. 80: 3985-3993.   DOI   ScienceOn
26 Reading, P. C., P. G. Whitney, D. P. Barr, M. Wojtasiak, J. D. Mintern, J. Waithman, and A. G. Brooks. 2007. IL-18, but not IL-12, regulates NK cell activity following intranasal herpes simplex virus type 1 infection. J. Immunol. 179: 3214-3221.   DOI
27 Sato, A., and A. Iwasaki. 2004. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc. Natl. Acad. Sci. U. S. A 101: 16274-16279.   DOI   ScienceOn
28 Nandakumar, S., S. N. Woolard, D. Yuan, B. T. Rouse, and U. Kumaraguru. 2008. Natural killer cells as novel helpers in anti-herpes simplex virus immune response. J. Virol. 82: 10820-10831.   DOI   ScienceOn
29 Staats, H. F., J. E. Oakes, and R. N. Lausch. 1991. Anti-glycoprotein D monoclonal antibody protects against herpes simplex virus type 1-induced diseases in mice functionally depleted of selected T-cell subsets or asialo $GM1^+$ cells. J. Virol. 65: 6008-6014.
30 Zhao, X., E. Deak, K. Soderberg, M. Linehan, D. Spezzano, J. Zhu, D. M. Knipe, and A. Iwasaki. 2003. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197: 153-162.   DOI
31 Reske, A., G. Pollara, C. Krummenacher, D. R. Katz, and B. M. Chain. 2008. Glycoprotein-dependent and TLR2-independent innate immune recognition of herpes simplex virus-1 by dendritic cells. J. Immunol. 180: 7525-7536.   DOI
32 Kassim, S. H., N. K. Rajasagi, B. W. Ritz, S. B. Pruett, E. M. Gardner, R. Chervenak, and S. R. Jennings. 2009. Dendritic cells are required for optimal activation of natural killer functions following primary infection with herpes simplex virus type 1. J. Virol. 83: 3175-3186.   DOI   ScienceOn
33 Wakimoto, H., P. R. Johnson, D. M. Knipe, and E. A. Chiocca. 2003. Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther. 10: 983-990.   DOI   ScienceOn
34 Frank, G. M., K. A. Buela, D. M. Maker, S. A. Harvey, and R. L. Hendricks. 2012. Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea. J. Immunol. 188: 1350-1359.   DOI   ScienceOn
35 Ellermann-Eriksen, S. 2005. Macrophages and cytokines in the early defence against herpes simplex virus. Virol. J. 2: 59.   DOI   ScienceOn
36 Verschoor, A., M. A. Brockman, D. M. Knipe, and M. C. Carroll. 2001. Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. J. Immunol. 167: 2446-2451.   DOI
37 Chan, T., N. G. Barra, A. J. Lee, and A. A. Ashkar. 2011. Innate and adaptive immunity against herpes simplex virus type 2 in the genital mucosa. J. Reprod. Immunol. 88: 210-218.   DOI   ScienceOn
38 Kim, M., N. R. Osborne, W. Zeng, H. Donaghy, K. McKinnon, D. C. Jackson, and A. L. Cunningham. 2012. Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes. J. Immunol. 188: 4158-4170.   DOI   ScienceOn
39 Harandi, A. M., B. Svennerholm, J. Holmgren, and K. Eriksson. 2001. Differential roles of B cells and IFN-gamma-secreting CD4(+) T cells in innate and adaptive immune control of genital herpes simplex virus type 2 infection in mice. J. Gen. Virol. 82: 845-853.   DOI
40 Da, C., X, M. A. Brockman, E. Alicot, M. Ma, M. B. Fischer, X. Zhou, D. M. Knipe, and M. C. Carroll. 1999. Humoral response to herpes simplex virus is complement-dependent. Proc. Natl. Acad. Sci. U. S. A. 96: 12708-12712.   DOI
41 Kwant-Mitchell, A., A. A. Ashkar, and K. L. Rosenthal. 2009. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J. Virol. 83: 10664-10676.   DOI   ScienceOn
42 Bourne, K. Z., N. Bourne, S. F. Reising, and L. R. Stanberry. 1999. Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Res. 42: 219-226.   DOI   ScienceOn
43 Gebhardt, B. M., F. Focher, R. Eberle, A. Manikowski, and G. E. Wright. 2009. Effect of combinations of antiviral drugs on herpes simplex encephalitis. Drug Des Devel. Ther. 3: 289-294.
44 Mansur, D. S., E. G. Kroon, M. L. Nogueira, R. M. Arantes, S. C. Rodrigues, S. Akira, R. T. Gazzinelli, and M. A. Campos. 2005. Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am. J. Pathol. 166: 1419-1426.   DOI   ScienceOn
45 Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21: 335-376.   DOI   ScienceOn
46 Roizman. B., and Knipe, D. M. 2001. Herpes simplex viruses and their replication. In Fields Virology, 4th edition. Eds. Knipe, D. M., and Howley, P. M. Lippincott Williams & Wilkins. p. 2399-2459.
47 Bernstein, D. I., and L. R. Stanberry. 1999. Herpes simplex virus vaccines. Vaccine 17: 1681-1689.   DOI   ScienceOn
48 Kawai, T., and S. Akira. 2005. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 17: 338-344.   DOI   ScienceOn
49 Kawai, T., and S. Akira. 2007. TLR signaling. Cell Death Differ. 13: 816-825.
50 Doyle, S. L., and L. A. O'Neill. 2006. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72: 1102-1113.   DOI   ScienceOn
51 Menasria, R., N. Boivin, M. Lebel, J. Piret, J. Gosselin, and G. Boivin. 2013. Both TRIF and IPS-1 adaptor proteins contribute to the cerebral innate immune response against herpes simplex virus 1 infection. J. Virol. 87: 7301-7308.   DOI   ScienceOn
52 Krieg, A. M., A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546-459.   DOI   ScienceOn
53 Wang, J. P., G. N. Bowen, S. Zhou, A. Cerny, A. Zacharia, D. M. Knipe, R. W. Finberg, and E. A. Kurt-Jones. 2012. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J. Virol. 86: 2273-2281.   DOI
54 Aravalli, R. N., S. Hu, T. N. Rowen, J. M. Palmquist, and J. R. Lokensgard. 2005. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J. Immunol. 175: 4189-4193.   DOI
55 Krug, A., G. D. Luker, W. Barchet, D. A. Leib, S. Akira, and M. Colonna. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103: 1433-1437.
56 Schachtele, S. J., S. Hu, M. R. Little, and J. R. Lokensgard. 2010. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J. Neuroinflammation. 7: 35.   DOI   ScienceOn
57 Hochrein, H., B. Schlatter, M. O'Keeffe, C. Wagner, F. Schmitz, M. Schiemann, S. Bauer, M. Suter, and H. Wagner. 2004. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl. Acad. Sci. U. S. A. 101: 11416-11421.   DOI   ScienceOn
58 Sorensen, L. N., L. S. Reinert, L. Malmgaard, C. Bartholdy, A. R. Thomsen, and S. R. Paludan. 2008. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J. Immunol. 181: 8604-8612.   DOI
59 Tengvall, S., and A. M. Harandi. 2008. Importance of myeloid differentiation factor 88 in innate and acquired immune protection against genital herpes infection in mice. J. Reprod. Immunol. 78: 49-57.   DOI   ScienceOn
60 Isaacs, A., J. Lindenmann, and R. C. Valentine. 1957. Virus interference. II. Some properties of interferon. Proc. R. Soc. Lond B Biol. Sci. 147: 268-273.   DOI
61 Guo, Y., M. Audry, M. Ciancanelli, L. Alsina, J. Azevedo, M. Herman, E. Anguiano, V. Sancho-Shimizu, L. Lorenzo, E. Pauwels, P. B. Philippe, D. R. Perez de, A. Cardon, G. Vogt, C. Picard, Z. Z. Andrianirina, F. Rozenberg, P. Lebon, S. Plancoulaine, M. Tardieu, D. Valerie, E. Jouanguy, D. Chaussabel, F. Geissmann, L. Abel, J. L. Casanova, and S. Y. Zhang. 2011. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208: 2083-2098.   DOI   ScienceOn
62 Reinert, L. S., L. Harder, C. K. Holm, M. B. Iversen, K. A. Horan, F. gnaes-Hansen, B. P. Ulhoi, T. H. Holm, T. H. Mogensen, T. Owens, J. R. Nyengaard, A. R. Thomsen, and S. R. Paludan. 2012. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J. Clin. Invest 122: 1368-1376.   DOI   ScienceOn
63 Kotenko, S. V., G. Gallagher, V. V. Baurin, A. Lewis-Antes, M. Shen, N. K. Shah, J. A. Langer, F. Sheikh, H. Dickensheets, and R. P. Donnelly. 2003. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4: 69-77.
64 Swann, J. B., Y. Hayakawa, N. Zerafa, K. C. Sheehan, B. Scott, R. D. Schreiber, P. Hertzog, and M. J. Smyth. 2007. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 178: 7540-7549.   DOI
65 Liu, Y. J. 2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23: 275-306.   DOI   ScienceOn
66 Janeway, C. A., Travers, P., Walport, M., and Shlomchik, M. J. 2005. Immunobiology. The immune system in health and disease, 6th Edition. Garland Science, New York, p. 461-516.
67 Conrady, C. D., W. P. Halford, and D. J. Carr. 2011. Loss of the type I interferon pathway increases vulnerability of mice to genital herpes simplex virus 2 infection. J. Virol. 85: 1625-1633.   DOI   ScienceOn
68 Sheppard, P., W. Kindsvogel, W. Xu, K. Henderson, S. Schlutsmeyer, T. E. Whitmore, R. Kuestner, U. Garrigues, C. Birks, J. Roraback, C. Ostrander, D. Dong, J. Shin, S. Presnell, B. Fox, B. Haldeman, E. Cooper, D. Taft, T. Gilbert, F. J. Grant, M. Tackett, W. Krivan, G. McKnight, C. Clegg, D. Foster, and K. M. Klucher. 2003. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 4: 63-68.   DOI   ScienceOn
69 Gill, N., P. M. Deacon, B. Lichty, K. L. Mossman, and A. A. Ashkar. 2006. Induction of innate immunity against herpes simplex virus type 2 infection via local delivery of Toll-like receptor ligands correlates with beta interferon production. J. Virol. 80: 9943-9950.   DOI   ScienceOn
70 Rasmussen, S. B., L. N. Sorensen, L. Malmgaard, N. Ank, J. D. Baines, Z. J. Chen, and S. R. Paludan. 2007. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems. J. Virol. 81: 13315-13324.   DOI   ScienceOn
71 Milligan, G. N., and D. I. Bernstein. 1997. Interferon-gamma enhances resolution of herpes simplex virus type 2 infection of the murine genital tract. Virology 229: 259-268.   DOI   ScienceOn
72 Conrady, C. D., H. Jones, M. Zheng, and D. J. Carr. 2011. A functional type I interferon pathway drives resistance to cornea herpes simplex virus type 1 infection by recruitment of leukocytes. J. Biomed. Res. 25: 111-119.   DOI   ScienceOn
73 Conrady, C. D., M. Zheng, N. A. Mandal, R. N. van, and D. J. Carr. 2013. IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal. Immunol. 6: 45-55.   DOI   ScienceOn
74 Gill, N., M. J. Chenoweth, E. F. Verdu, and A. A. Ashkar. 2011. NK cells require type I IFN receptor for antiviral responses during genital HSV-2 infection. Cell Immunol. 269: 29-37.   DOI   ScienceOn
75 Doyle, S. E., H. Schreckhise, K. Khuu-Duong, K. Henderson, R. Rosler, H. Storey, L. Yao, H. Liu, F. Barahmand-pour, P. Sivakumar, C. Chan, C. Birks, D. Foster, C. H. Clegg, P. Wietzke-Braun, S. Mihm, and K. M. Klucher. 2006. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44: 896-906.   DOI   ScienceOn
76 Mikloska, Z., and A. L. Cunningham. 2001. Alpha and gamma interferons inhibit herpes simplex virus type 1 infection and spread in epidermal cells after axonal transmission. J. Virol. 75: 11821-11826.   DOI   ScienceOn
77 Dobbs, M. E., J. E. Strasser, C. F. Chu, C. Chalk, and G. N. Milligan. 2005. Clearance of herpes simplex virus type 2 by $CD8^+$ T cells requires gamma interferon and either perforin-or Fas-mediated cytolytic mechanisms. J. Virol. 79: 14546-14554.   DOI   ScienceOn
78 Cantin, E., B. Tanamachi, and H. Openshaw. 1999. Role for gamma interferon in control of herpes simplex virus type 1 reactivation. J. Virol. 73: 3418-3423.
79 Zhou, Z., O. J. Hamming, N. Ank, S. R. Paludan, A. L. Nielsen, and R. Hartmann. 2007. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J. Virol. 81: 7749-7758.   DOI   ScienceOn
80 Stanberry, L. R., D. I. Bernstein, R. L. Burke, C. Pachl, and M. G. Myers. 1987. Vaccination with recombinant herpes simplex virus glycoproteins: protection against initial and recurrent genital herpes. J. Infect. Dis. 155: 914-920.   DOI   ScienceOn
81 Zhang, X., A. A. Chentoufi, G. Dasgupta, A. B. Nesburn, M. Wu, X. Zhu, D. Carpenter, S. L. Wechsler, S. You, and L. BenMohamed. 2009. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic $CD8^+$ T cells and protects against herpes simplex virus type 2 challenge. Mucosal. Immunol. 2: 129143.
82 Iversen, M. B., N. Ank, J. Melchjorsen, and S. R. Paludan. 2010. Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-kappaB than type I IFNs. J. Virol. 84: 4579-4586.   DOI   ScienceOn
83 Marcello, T., A. Grakoui, G. Barba-Spaeth, E. S. Machlin, S. V. Kotenko, M. R. MacDonald, and C. M. Rice. 2006. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131: 1887-1898.   DOI   ScienceOn
84 Ank, N., H. West, C. Bartholdy, K. Eriksson, A. R. Thomsen, and S. R. Paludan. 2006. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol. 80: 4501-4509.   DOI   ScienceOn
85 Ank, N., M. B. Iversen, C. Bartholdy, P. Staeheli, R. Hartmann, U. B. Jensen, F. gnaes-Hansen, A. R. Thomsen, Z. Chen, H. Haugen, K. Klucher, and S. R. Paludan. 2008. An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity. J. Immunol. 180: 2474-2485.   DOI
86 Li, J., S. Hu, L. Zhou, L. Ye, X. Wang, J. Ho, and W. Ho. 2011. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia 59: 58-67.   DOI   ScienceOn
87 Bourne, N., F. J. Bravo, M. Francotte, D. I. Bernstein, M. G. Myers, M. Slaoui, and L. R. Stanberry. 2003. Herpes simplex virus (HSV) type 2 glycoprotein D subunit vaccines and protection against genital HSV-1 or HSV-2 disease in guinea pigs. J. Infect. Dis. 187: 542-549.   DOI   ScienceOn
88 Jamali, A., M. H. Roostaee, H. Soleimanjahi, P. F. Ghaderi, and T. Bamdad. 2007. DNA vaccine-encoded glycoprotein B of HSV-1 fails to protect chronic morphine-treated mice against HSV-1 challenge. Comp Immunol. Microbiol. Infect. Dis. 30: 71-80.   DOI   ScienceOn
89 Johnston, C., D. M. Koelle, and A. Wald. 2011. HSV-2: in pursuit of a vaccine. J. Clin. Invest 121: 4600-4609.   DOI
90 Belshe, R. B., P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, and C. D. Deal. 2012. Efficacy results of a trial of a herpes simplex vaccine. N. Engl. J. Med. 366: 3443.
91 Ghasemi, M., M. Erturk, K. Buruk, and M. Sonmez. 2013. Induction of potent protection against acute and latent herpes simplex virus infection in mice vaccinated with dendritic cells. Cytotherapy 15: 352-361.   DOI   ScienceOn
92 Bourne, N., G. N. Milligan, L. R. Stanberry, R. Stegall, and R. B. Pyles. 2005. Impact of immunization with glycoprotein D2/AS04 on herpes simplex virus type 2 shedding into the genital tract in guinea pigs that become infected. J. Infect. Dis. 192: 2117-2123.   DOI   ScienceOn
93 Stanberry, L. R., S. L. Spruance, A. L. Cunningham, D. I. Bernstein, A. Mindel, S. Sacks, S. Tyring, F. Y. Aoki, M. Slaoui, M. Denis, P. Vandepapeliere, and G. Dubin. 2002. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Engl. J. Med. 347: 1652-1661.   DOI   ScienceOn
94 Corey, L., A. G. Langenberg, R. Ashley, R. E. Sekulovich, A. E. Izu, J. M. Douglas, Jr., H. H. Handsfield, T. Warren, L. Marr, S. Tyring, R. DiCarlo, A. A. Adimora, P. Leone, C. L. Dekker, R. L. Burke, W. P. Leong, and S. E. Straus. 1999. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 282: 331-340.
95 Ushio, C., H. Ariyasu, T. Ariyasu, S. Arai, T. Ohta, and S. Fukuda. 2009. Suppressive effects of a cyanine dye against herpes simplex virus (HSV)-1 infection. Biomed. Res. 30: 365-368.   DOI
96 Kim, S. B., Y. W. Han, M. M. Rahman, S. J. Kim, D. J. Yoo, S. H. Kang, K. Kim, and S. K. Eo. 2009. Modulation of protective immunity against herpes simplex virus via mucosal genetic co-transfer of DNA vaccine with beta2-adrenergic agonist. Exp. Mol. Med. 41: 812-823.   DOI   ScienceOn
97 Lindqvist, M., J. Persson, K. Thorn, and A. M. Harandi. 2009. The mucosal adjuvant effect of alpha-galactosylceramide for induction of protective immunity to sexually transmitted viral infection. J. Immunol. 182: 6435-6443.   DOI   ScienceOn
98 Uyangaa, E., H. K. Lee, and S. K. Eo. 2012. Glutamine and leucine provide enhanced protective immunity against mucosal infection with herpes simplex virus type 1. Immune. Netw. 12: 196-206.   DOI   ScienceOn
99 Kuo, Y. C., Y. C. Lee, Y. L. Leu, W. J. Tsai, and S. C. Chang. 2008. Efficacy of orally administered Lobelia chinensis extracts on herpes simplex virus type 1 infection in BALB/c mice. Antiviral Res. 80: 206-212.   DOI   ScienceOn
100 Cho, A., Y. S. Roh, E. Uyangaa, S. Park, J. W. Kim, K. H. Lim, J. Kwon, S. K. Eo, C. W. Lim, and B. Kim. 2013. Protective effects of red ginseng extract against vaginal herpes simplex virus infection. J. Ginseng. Res. 37: 210-218.   DOI   ScienceOn
101 Petrera, E., and C. E. Coto. 2014. Effect of the potent antiviral 1-cinnamoyl-3,11-dihydroxymeliacarpin on cytokine production by murine macrophages stimulated with HSV-2. Phytother. Res. 28: 104-109.   DOI   ScienceOn
102 Balzarini, J., G. Andrei, E. Balestra, D. Huskens, C. Vanpouille, A. Introini, S. Zicari, S. Liekens, R. Snoeck, A. Holy, C. F. Perno, L. Margolis, and D. Schols. 2013. A multi-targeted drug candidate with dual anti-HIV and anti-HSV activity. PLoS Pathog. 9: e1003456.   DOI
103 Hu, K., X. He, F. Yu, X. Yuan, W. Hu, C. Liu, F. Zhao, and J. Dou. 2011. Immunization with DNA vaccine expressing herpes simplex virus type 1 gD and IL-21 protects against mouse herpes keratitis. Immunol. Invest 40: 265-278.
104 Koelle, D. M., A. Magaret, C. L. McClurkan, M. L. Remington, T. Warren, F. Teofilovici, and A. Wald. 2008. Phase I dose-escalation study of a monovalent heat shock protein 70-herpes simplex virus type 2 (HSV-2) peptide-based vaccine designed to prime or boost CD8 T-cell responses in HSV-naive and HSV-2-infected subjects. Clin. Vaccine Immunol. 15: 773-782.   DOI   ScienceOn
105 Awasthi, S., J. W. Balliet, J. A. Flynn, J. M. Lubinski, C. E. Shaw, D. J. DiStefano, M. Cai, M. Brown, J. F. Smith, R. Kowalski, R. Swoyer, J. Galli, V. Copeland, S. Rios, R. C. Davidson, M. Salnikova, S. Kingsley, J. Bryan, D. R. Casimiro, and H. M. Friedman. 2014. Protection provided by a herpes simplex virus 2 (HSV-2) glycoprotein C and D subunit antigen vaccine against genital HSV-2 infection in HSV-1-seropositive guinea pigs. J. Virol. 88: 2000-2010.   DOI   ScienceOn
106 Brans, R., and F. Yao. 2010. Immunization with a dominant-negative recombinant Herpes Simplex Virus (HSV) type 1 protects against HSV-2 genital disease in guinea pigs. BMC. Microbiol. 10: 163.   DOI   ScienceOn
107 Koelle, D. M., and L. Corey. 2008. Herpes simplex: insights on pathogenesis and possible vaccines. Annu. Rev. Med. 59: 381-395.   DOI   ScienceOn
108 Koelle, D. M., C. M. Posavad, G. R. Barnum, M. L. Johnson, J. M. Frank, and L. Corey. 1998. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Invest 101: 1500-1508.   DOI   ScienceOn
109 Himmelein, S., A. J. St Leger, J. E. Knickelbein, A. Rowe, M. L. Freeman, and R. L. Hendricks. 2011. Circulating herpes simplex type 1 (HSV-1)-specific $CD8^+$ T cells do not access HSV-1 latently infected trigeminal ganglia. Herpesviridae. 2: 5.   DOI   ScienceOn
110 Wilson, S. S., E. Fakioglu, and B. C. Herold. 2009. Novel approaches in fighting herpes simplex virus infections. Expert. Rev. Anti. Infect. Ther. 7: 559-568.   DOI   ScienceOn
111 Petrera, E., and C. E. Coto. 2014. Effect of the potent antiviral 1-cinnamoyl-3,11-dihydroxymeliacarpin on cytokine production by murine macrophages stimulated with HSV-2. Phytother. Res. 28: 104-109.   DOI   ScienceOn
112 Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801.   DOI   ScienceOn
113 Boivin, N., Y. Sergerie, S. Rivest, and G. Boivin. 2008. Effect of pretreatment with toll-like receptor agonists in a mouse model of herpes simplex virus type 1 encephalitis. J. Infect. Dis. 198: 664672.
114 Miller, R. L., M. A. Tomai, C. J. Harrison, and D. I. Bernstein. 2002. Immunomodulation as a treatment strategy for genital herpes: review of the evidence. Int. Immunopharmacol. 2: 443-451.   DOI   ScienceOn
115 Ashkar, A. A., X. D. Yao, N. Gill, D. Sajic, A. J. Patrick, and K. L. Rosenthal. 2004. Toll-like receptor (TLR)-3, but not TLR4, agonist protects against genital herpes infection in the absence of inflammation seen with CpG DNA. J. Infect. Dis. 190: 1841-1849.   DOI   ScienceOn
116 Sajic, D., A. J. Patrick, and K. L. Rosenthal. 2005. Mucosal delivery of CpG oligodeoxynucleotides expands functional dendritic cells and macrophages in the vagina. Immunology 114: 213-224.   DOI   ScienceOn
117 Ashkar, A. A., S. Bauer, W. J. Mitchell, J. Vieira, and K. L. Rosenthal. 2003. Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. J. Virol. 77: 8948-8956.   DOI
118 Gill, N., E. J. Davies, and A. A. Ashkar. 2008. The role of toll-like receptor ligands/agonists in protection against genital HSV-2 infection. Am. J. Reprod. Immunol. 59: 35-43.
119 Tumpey, T. M., H. Cheng, X. T. Yan, J. E. Oakes, and R. N. Lausch. 1998. Chemokine synthesis in the HSV-1-infected cornea and its suppression by interleukin-10. J. Leukoc. Biol. 63: 486-492.   DOI
120 Kratholm, S. K., M. B. Iversen, L. Reinert, S. K. Jensen, M. Hokland, T. Andersen, A. Rankin, D. Young, S. Frische, S. R. Paludan, and C. K. Holm. 2013. Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections. PLoS One 8: e81790.   DOI
121 Eo, S. K., S. Lee, S. Chun, and B. T. Rouse. 2001. Modulation of immunity against herpes simplex virus infection via mucosal genetic transfer of plasmid DNA encoding chemokines. J. Virol. 75: 569-578.   DOI   ScienceOn
122 Ghiasi, H., S. Cai, G. C. Perng, A. B. Nesburn, and S. L. Wechsler. 2000. Both $CD4^+$ and $CD8^+$ T cells are involved in protection against HSV-1 induced corneal scarring. Br. J. Ophthalmol. 84: 408-412.   DOI
123 Kumamoto, Y., L. M. Mattei, S. Sellers, G. W. Payne, and A. Iwasaki. 2011. $CD4^+$ T cells support cytotoxic T lymphocyte priming by controlling lymph node input. Proc. Natl. Acad. Sci. U. S. A. 108: 8749-8754.   DOI   ScienceOn
124 Coleman, C. A., M. C. Muller-Trutwin, C. Apetrei, and I. Pandrea. 2007. T regulatory cells: aid or hindrance in the clearance of disease? J. Cell Mol. Med. 11: 1291-1325.   DOI   ScienceOn
125 Rajasagi, N. K. 2007. The role of $CD4^+$ Helper T cells, IL-2 and IL-15 in the generation of an optimal $CD8^+$ T cell response following infection with herpes simplex virus-1 (HSV-1). Louisiana State University Health Sciences Center-Shreveport, ProQuest, UMI Dissertations Publishing Number: 3311956, p. 56-61.
126 Koelle, D. M., C. M. Posavad, G. R. Barnum, M. L. Johnson, J. M. Frank, and L. Corey. 1998. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Invest 101: 1500-1508.   DOI   ScienceOn
127 Dasgupta, G., A. A. Chentoufi, S. You, P. Falatoonzadeh, L. A. Urbano, A. Akhtarmalik, K. Nguyen, L. Ablabutyan, A. B. Nesburn, and L. BenMohamed. 2011. Engagement of TLR2 reverses the suppressor function of conjunctiva $CD4^+$$CD25^+$ regulatory T cells and promotes herpes simplex virus epitope-specific $CD4^+$$CD25^-$ effector T cell responses. Invest Ophthalmol. Vis. Sci. 52: 3321-3333.   DOI
128 Sehrawat, S., S. Suvas, P. P. Sarangi, A. Suryawanshi, and B. T. Rouse. 2008. In vitro-generated antigen-specific $CD4^+$ $CD25^+$ $Foxp3^+$ regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions. J. Virol. 82: 6838-6851.   DOI   ScienceOn
129 Kim, J. O., H. R. Cha, E. D. Kim, and M. N. Kweon. 2012. Pathological effect of IL-17A-producing TCRgammadelta(+) T cells in mouse genital mucosa against HSV-2 infection. Immunol. Lett. 147: 34-40.   DOI   ScienceOn
130 Gorander, S., A. M. Harandi, M. Lindqvist, T. Bergstrom, and J. A. Liljeqvist. 2012. Glycoprotein G of herpes simplex virus 2 as a novel vaccine antigen for immunity to genital and neurological disease. J. Virol. 86: 7544-7553.   DOI
131 Jirmo, A. C., C. H. Nagel, C. Bohnen, B. Sodeik, and G. M. Behrens. 2009. Contribution of direct and cross-presentation to CTL immunity against herpes simplex virus 1. J. Immunol. 182: 283-292.   DOI
132 St Leger, A. J., B. Peters, J. Sidney, A. Sette, and R. L. Hendricks. 2011. Defining the herpes simplex virus-specific $CD8^+$ T cell repertoire in C57BL/6 mice. J. Immunol. 186: 3927-3933.   DOI
133 van, L. A., M. Ayers, A. G. Brooks, R. M. Coles, W. R. Heath, and F. R. Carbone. 2004. Herpes simplex virus-specific $CD8^+$ T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation. J. Immunol. 172: 392-397.   DOI
134 Liu, K., D. Jiang, L. Zhang, Z. Yao, Z. Chen, S. Yu, and X. Wang. 2012. Identification of B- and T-cell epitopes from glycoprotein B of herpes simplex virus 2 and evaluation of their immunogenicity and protection efficacy. Vaccine 30: 3034-3041.   DOI   ScienceOn
135 Deshpande, S. P., M. Zheng, M. Daheshia, and B. T. Rouse. 2000. Pathogenesis of herpes simplex virus-induced ocular immunoinflammatory lesions in B-cell-deficient mice. J. Virol. 74: 3517-3524.   DOI
136 Peek, R., G. M. Verjans, and B. Meek. 2002. Herpes simplex virus infection of the human eye induces a compartmentalized virus-specific B cell response. J. Infect. Dis. 186: 1539-1546.   DOI   ScienceOn
137 Iijima, N., M. M. Linehan, M. Zamora, D. Butkus, R. Dunn, M. R. Kehry, T. M. Laufer, and A. Iwasaki. 2008. Dendritic cells and B cells maximize mucosal Th1 memory response to herpes simplex virus. J. Exp. Med. 205: 3041-3052.   DOI   ScienceOn
138 Kuklin, N. A., M. Daheshia, S. Chun, and B. T. Rouse. 1998. Role of mucosal immunity in herpes simplex virus infection. J. Immunol. 160: 5998-6003.