• 제목/요약/키워드: therapeutic potential

검색결과 2,195건 처리시간 0.028초

Particulate matter induces ferroptosis by accumulating iron and dysregulating the antioxidant system

  • Minkyung Park;Young-Lai Cho;Yumin Choi;Jeong-Ki Min;Young-Jun Park;Sung-Jin Yoon;Dae-Soo Kim;Mi-Young Son;Su Wol Chung;Heedoo Lee;Seon-Jin Lee
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.96-101
    • /
    • 2023
  • Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liproxstatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells.

Hypoxia-inducible factor 1α inhibitor induces cell death via suppression of BCR-ABL1 and Met expression in BCR-ABL1 tyrosine kinase inhibitor sensitive and resistant chronic myeloid leukemia cells

  • Masanobu Tsubaki;Tomoya Takeda;Takuya Matsuda;Akihiro Kimura;Remi Tanaka;Sakiko Nagayoshi;Tadafumi Hoshida;Kazufumi Tanabe;Shozo Nishida
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.78-83
    • /
    • 2023
  • Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment.

레베드 요법(Lebed Therapy)이 간호사의 우울, 불안과 스트레스에 미치는 효과 (The Effects of Lebed Method Exercise on Nurses' Depression, Anxiety, and Stress)

  • 최금희;유영순;박윤희;이지원
    • 임상간호연구
    • /
    • 제15권1호
    • /
    • pp.67-77
    • /
    • 2009
  • Purpose: This study was aimed to investigate the effects of Lebed method exercise (LME) on nurses' depression, anxiety and stress. The LME is a therapeutic exercise and movement program developed by Sherry Lebed Davis and expected to lessen the stress level of nurses and enhance the nursing job's satisfaction and efficiency. This study was utilized a non equivalent control group pre-post test design. Method: The subjects were 36 nurses in total; 18 in experimental group and 18 in control group. The data were collected from March to August, 2008. For the experimental group, 8 hour-long lectures on stress management and LME were given for 12 weeks. For the control group, only lectures on stress management was given. Depression, anxiety, perceived stress, and heart rate variability were measured on the subjects in both groups as pre- and post tests. The data were analyzed by Kolmogrov-Smirov test and P-P plot, t-test and $x^2-test$ using the SPSS program. Results: As proposed in the hypothesis, the subjects in the experimental group experienced less depression (t=2.286, p=.029), less anxiety (t=3.319, p=.002) and less perceived stress(t=2.862, p=.007) than those in the control group. Conclusion: The LME is considered an effective exercise to improve depression, anxiety, and to lessen stress for the nurses. The LME program has potential to be one of the effective stress management interventions for nurses in the future.

산약(Disocorea batatas) 에탄올추출물의 L. gasseri, S. mutans, P. gingivalis에 대한 항균능과 성장억제 효과 (Antibacterial Effect of Dioscorea Batatas Ethanol Extract Against L. gasseri, S. mutans and P. gingivalis)

  • 윤현서;박충무
    • 대한통합의학회지
    • /
    • 제11권2호
    • /
    • pp.149-157
    • /
    • 2023
  • Purpose : In this study, to prove the antibacterial effect of Disocorea batatas, which is widely used for food, and to confirm the growth inhibitory effect, the antibacterial activity against L. gasseri, S. mutans, and P. gingivalis was verified. Based on this, it is intended to verify the utility as a preventive and therapeutic composition for dental caries and periodontal disease. Methods : RAW 264.7 cells were used to verify the cell survival rate and NO (Nitric Oxide) inhibitory effect on Disocorea batatas ethanol extract (DBEE). In order to verify the antibacterial effect against L. gasseri, S. mutans, and P. gingivalis, concentrations of 125, 250, and 500 ㎎/㎖ of DBEE were used and measured by the disk diffusion method. In order to confirm the growth inhibitory effect, the absorbance was measured at 600 ㎚ at 3, 6, 12, 18, and 24 hours using the liquid medium dilution method, and the growth inhibitory effect was measured compared to the control group. Results : The cell viability for DBEE was 91 % at 50 ㎎/㎖, and there was no cytotoxicity. The NO production inhibitory effect was shown from 10 ㎍/ml, and the higher the concentration, the greater the inhibitory effect. As for the antimicrobial effect using the disk diffusion method, the higher the concentration, the higher the antibacterial effect. At 125 ㎎/㎖ and 250 ㎎/㎖, S. mutans and L. gasseri showed high antimicrobial activity, and at 500 ㎎/㎖, the antibacterial effect was higher in L. gasseri. The growth inhibitory effect in DBEE was concentration-dependent as the higher the concentration, the higher the growth inhibitory effect, and all of them began to show growth inhibitory effects from 6 hours. Conclusion : Considering that it is widely used as an edible and medicinal material, Disocorea batatas has shown the potential to be used as a substance to prevent and alleviate dental caries and periodontal diseases, and it is believed that further research can be applied to oral health care products.

Investigation of Anti-inflammatory and Anti-oxidative Activities of Lonicerae Flos, Citri Pericarpium and Violae Herba Complex (LCVC)

  • Hong Kyoung Kim
    • 대한한의학회지
    • /
    • 제43권4호
    • /
    • pp.52-73
    • /
    • 2022
  • Objectives: The anti-inflammatory and anti-oxidative activities of LCVC (Lonicerae Flos, Citri Pericarpium and Violae Herba Complex) have not been fully elucidated. The purpose of this study was to investigate the mechanisms underlying these effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods: The evaluation of the anti-oxidative activity of LCVC was completed via DPPH and ABTS radical scavenging capacity, FRAP assay, measurement of polyphenol and flavonoid, assessment of ROS and NO levels in LPS-induced RAW 264.7 cells. The anti-inflammatory activity was defined by measuring the production of biomarkers (PGE2, IL-1B, IL-6 and TNF-𝛼), proteins (ERK, JNK, P38, Nrf2, Keap1, HO-1 and NQO1) and expressions of genes (iNOS, COX-2, IL-1𝛽, IL-6, TNF-𝛼, Nrf2, Keap1, HO-1 and NQO1) in LPS-induced RAW 264.7 cells. Results: LCVC have polyphenol and flavonoid contents. The results of DPPH and ABTS free radical scavenging capacity and FRAP assay showed that the anti-oxidative activity was increased. Production of ROS, NO, IL-6, TNF-𝛼, mRNA expressions of IL-1𝛽, IL-6, TNF-𝛼, Keap1, iNOS and COX-2 were decreased, and NQO1, Nrf2, and HO-1 were increased. In protein expression, JNK and Keap1 were decreased, NQO1, Nrf2 and HO-1 were increased, and no relationships were observed with the ERK and P38 by LCVC. Conclusions: These results suggest that LCVC may offer protective effects against LPS-induced inflammatory and oxidative responses through attenuating Nrf2/HO-1 pathway and MAPKs pathway. Therefore, we propose that LCVC has anti-inflammatory and anti-oxidative activities that have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by the over-activation of macrophages.

MicroRNA-127 promotes antimicrobial ability in porcine alveolar macrophages via S1PR3/TLR signaling pathway

  • Honglei Zhou;Yujia Qian;Jing Liu
    • Journal of Veterinary Science
    • /
    • 제24권2호
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • Background: As Actinobacillus pleuropneumonniae (APP) infection causes considerable losses in the pig industry, there is a growing need to develop effective therapeutic interventions that leverage host immune defense mechanisms to combat these pathogens. Objectives: To demonstrate the role of microRNA (miR)-127 in controlling bacterial infection against APP. Moreover, to investigate a signaling pathway in macrophages that controls the production of anti-microbial peptides. Methods: Firstly, we evaluated the effect of miR-127 on APP-infected pigs by cell count/enzyme-linked immunosorbent assay (ELISA). Then the impact of miR-127 on immune cells was detected. The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were evaluated by ELISA. The expression of cytokines (anti-microbial peptides [AMPs]) was assessed using quantitative polymerase chain reaction. The expression level of IL-6, TNF-α and p-P65 were analyzed by western blot. The expression of p65 in the immune cells was investigated by immunofluorescence. Results: miR-127 showed a protective effect on APP-infected macrophage. Moreover, the protective effect might depend on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17 and AMPs by targeting sphingosine-1-phosphate receptor3 (SIPR3), the element involved in the Toll-like receptor (TLR) cascades. Conclusions: Together, we identify that miR-127 is a regulator of S1PR3 and then regulates TLR/nuclear factor-κB signaling in macrophages with anti-bacterial acticity, and it might be a potential target for treating inflammatory diseases caused by APP.

The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat

  • Maryam Esfahani;Amir Hossein Rahbar;Sara Soleimani Asl;Saed Bashirian;Effat Sadat Mir Moeini;Fereshteh Mehri
    • Safety and Health at Work
    • /
    • 제14권1호
    • /
    • pp.118-123
    • /
    • 2023
  • Background: Chronic exposure to silica is related with the provocation of an inflammatory response and oxidative stress mechanism. Vitamin D has multiple benefits in biological activities particularly respiratory system disease. Method: In this research, 20 male Wistar rats were randomly allocated into four groups (5 rats /group) as follow: Group1 received saline as (negative control) group. The group 2 received a single IT instillation of silica (positive control) group; the group 3 was co-administrated with single IT silica and Vitamin D (20 mg/kg/day) daily for a period of 90 days. The rats of group 4 received Vitamin D daily for a period of 90 days. Results: Silica significantly increased serum and lung total Oxidant Status (TOS). Meanwhile, silica reduced serum and lung total antioxidant capacity (TAC), GSH and tumor necrosis factor-α (TNF-a). Vitamin D treatment meaningfully reversed oxidative stress, antioxidants status and inflammatory response. Also, Vitamin D improved histopathological changes caused by silica. Conclusion: These findings indicate that Vitamin D exerts protective effects against silica-induced lung injury. It seems that Vitamin D has potential use as a therapeutic object for silica induced lung injure.

Ubiquitin E3 ligases in cancer: somatic mutation and amplification

  • Eun-Hye Jo;Mi-Yeon Kim;Hyung-Ju Lee;Hee-Sae Park
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.265-274
    • /
    • 2023
  • Defects in DNA double-strand break (DSB) repair signaling permit cancer cells to accumulate genomic alterations that confer their aggressive phenotype. Nevertheless, tumors depend on residual DNA repair abilities to survive the DNA damage induced by genotoxic stress. This is why only isolated DNA repair signaling is inactivated in cancer cells. DNA DSB repair signaling contributes to general mechanism for various types of lesions in diverse cell cycle phases. DNA DSB repair genes are frequently mutated and amplified in cancer; however, limited data exist regarding the overall genomic prospect and functional result of these modifications. We list the DNA repair genes and related E3 ligases. Mutation and expression frequencies of these genes were analyzed in COSMIC and TCGA. The 11 genes with a high frequency of mutation differed between cancers, and mutations in many DNA DSB repair E3 ligase genes were related to a higher total mutation burden. DNA DSB repair E3 ligase genes are involved in tumor suppressive or oncogenic functions, such as RNF168 and FBXW7, by assisting the functionality of these genomic alterations. DNA damage response-related E3 ligases, such as RNF168, FBXW7, and HERC2, were generated with more than 10% mutation in several cancer cells. This study provides a broad list of candidate genes as potential biomarkers for genomic instability and novel therapeutic targets in cancer. As a DSB related proteins considerably appear the possibilities for targeting DNA repair defective tumors or hyperactive DNA repair tumors. Based on recent research, we describe the relationship between unstable DSB repairs and DSB-related E3 ligases.

Silkworm pupal extracts attenuate interleukin-1β-induced expression of matrix metalloproteinases and inflammatory mediators in the SW1353 human chondrosarcoma cell line

  • Kamidi Rahul;HaeYong Kweon;Ji Hae Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제46권2호
    • /
    • pp.60-66
    • /
    • 2023
  • Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases and is more common in older and obese individuals. Silkworm male pupae exerts tonic effects by increasing testosterone secretion and the forced swimming time and muscle ratio increased in mice consuming silkworm pupae, which may be beneficial to the older population. Therefore, it will be beneficial to investigate the effects of silkworm pupal extracts (SPE) on OA. To confirm this effect, we prepared SPE in different solvents, and their ability to attenuate matrix metalloproteinases (MMPs) and inflammatory mediators (interleukin-6 [IL-6], interleukin-8 [IL-8] and tumor necrosis factor-α [TNF-α]) were evaluated in an interleukin-1β (IL-1β)-induced SW1353 human chondrosarcoma cell line. 70% ethanolic SPE outperformed the other solvents, reducing MMP-1 and MMP-3 expression by up to 53% and 13%, respectively. Further experiments were performed using 70% ethanolic SPE from three distinct pupation stages in males and females. SPE treatment alleviated MMP-1 expression (43.9-47.4%) regardless of pupation stage and sex. Among the inflammatory mediators, 70% ethanolic SPE alleviated IL-6 and TNF-α levels, and the concentrations thereof were lowest in the early-stage male SPE-treated group (43.15% and 56.74%, respectively). In conclusion, 70% ethanolic SPE may prevent IL-1β-induced osteoarthritis by inhibiting MMPs and inflammatory cytokines. Therefore, SPE is a potential therapeutic agent for the treatment of OA.

Fermented Aloe arborescens Miller Leaf Extract Suppresses Acute Alcoholic Liver Injury via Antioxidant and Anti-Inflammatory Effects in C57BL/6J Mice

  • Min Ju Kim;Joon Hurh;Ha-Rim Kim;Sang-Wang Lee;Hong-Sig Sin;Sang-Jun Kim;Eun-mi Noh;Boung-Jun Oh;Seon-Young Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.463-470
    • /
    • 2023
  • This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.