Browse > Article
http://dx.doi.org/10.13048/jkm.22046

Investigation of Anti-inflammatory and Anti-oxidative Activities of Lonicerae Flos, Citri Pericarpium and Violae Herba Complex (LCVC)  

Hong Kyoung Kim (Dept. of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Daejeon University)
Publication Information
The Journal of Korean Medicine / v.43, no.4, 2022 , pp. 52-73 More about this Journal
Abstract
Objectives: The anti-inflammatory and anti-oxidative activities of LCVC (Lonicerae Flos, Citri Pericarpium and Violae Herba Complex) have not been fully elucidated. The purpose of this study was to investigate the mechanisms underlying these effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods: The evaluation of the anti-oxidative activity of LCVC was completed via DPPH and ABTS radical scavenging capacity, FRAP assay, measurement of polyphenol and flavonoid, assessment of ROS and NO levels in LPS-induced RAW 264.7 cells. The anti-inflammatory activity was defined by measuring the production of biomarkers (PGE2, IL-1B, IL-6 and TNF-𝛼), proteins (ERK, JNK, P38, Nrf2, Keap1, HO-1 and NQO1) and expressions of genes (iNOS, COX-2, IL-1𝛽, IL-6, TNF-𝛼, Nrf2, Keap1, HO-1 and NQO1) in LPS-induced RAW 264.7 cells. Results: LCVC have polyphenol and flavonoid contents. The results of DPPH and ABTS free radical scavenging capacity and FRAP assay showed that the anti-oxidative activity was increased. Production of ROS, NO, IL-6, TNF-𝛼, mRNA expressions of IL-1𝛽, IL-6, TNF-𝛼, Keap1, iNOS and COX-2 were decreased, and NQO1, Nrf2, and HO-1 were increased. In protein expression, JNK and Keap1 were decreased, NQO1, Nrf2 and HO-1 were increased, and no relationships were observed with the ERK and P38 by LCVC. Conclusions: These results suggest that LCVC may offer protective effects against LPS-induced inflammatory and oxidative responses through attenuating Nrf2/HO-1 pathway and MAPKs pathway. Therefore, we propose that LCVC has anti-inflammatory and anti-oxidative activities that have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by the over-activation of macrophages.
Keywords
Lonicerae Flos; Citri Pericarpium; Violae Herba; LCVC; Anti-oxidative; Anti-inflammatory;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Sirisinha, S. (2011). Insight into the mechanisms regulating immune homeostasis in health and disease. Asian Pacific Journal of Allergy and Immunology, 29(1), 1. https://pubmed.ncbi.nlm.nih.gov/21560483
2 Travelli, C., Colombo, G., Mola, S., Genazzani, A. A. & Porta, C. (2018). NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacological research, 135, 25-36. https://doi.org/10.1016/j.phrs.2018.06.022   DOI
3 McInnes, I. B. & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. New England Journal of Medicine, 365(23), 2205-2219. DOI: 10.1056/NEJMra1004965   DOI
4 Kehrer, J. P. & Klotz, L. O. (2015). Free radicals and related reactive species as mediators of tissue injury and disease: implications for health. Critical reviews in toxicology, 45(9), 765-798. https://doi.org/10.3109/10408444.2015.1074159   DOI
5 Linde, A., Mosier, D., Blecha, F. & Melgarejo, T. (2007). Innate immunity and inflammation-New frontiers in comparative cardiovascular pathology. Cardiovascular research, 73(1), 26-36. https://doi.org/10.1016/j.cardiores.2006.08.009   DOI
6 Cho, B. O., Ryu, H. W., So, Y., Lee, C. W., Jin, C. H., Yook, H. S. & Jeong, I. Y. (2014). Anti-inflammatory effect of mangostenone F in lipopolysaccharide-stimulated RAW264. 7 macrophages by suppressing NF-κB and MAPK activation. Biomolecules & therapeutics, 22(4), 288. doi:10.4062/biomolther.2014.052   DOI
7 Higuchi, M., Higashi, N., Taki, H. & Osawa, T. (1990). Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. The Journal of Immunology, 144(4), 1425-1431. https://www.jimmunol.org/content/144/4/1425.short
8 Mann, J. R., Backlund, M. G. & DuBois, R. N. (2005). Mechanisms of disease: Inflammatory mediators and cancer prevention. Nature clinical practice Oncology, 2(4), 202-210. https://doi.org/10.1038/ncponc0140   DOI
9 Sadowska-Bartosz, I., Gajewska, A., Skolimowski, J., Szewczyk, R. & Bartosz, G. (2015). Nitroxides protect against peroxynitrite-induced nitration and oxidation. Free Radical Biology and Medicine, 89, 1165-1175. https://doi.org/10.1016/j.freeradbiomed.2015.11.002   DOI
10 Guo, S., Qiu, P., Xu, G., Wu, X., Dong, P., Yang, G. & Xiao, H. (2012). Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-stimulated RAW 264.7 cells. Journal of agricultural and food chemistry, 60(9), 2157-2164. https://doi.org/10.1021/jf300129t   DOI
11 Kim, J., Cha, Y. N. & Surh, Y. J. (2010). A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 690(1-2), 12-23. https://doi.org/10.1016/j.mrfmmm.2009.09.007   DOI
12 Kang, K. A. & Hyun, J. W. (2017). Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicological research, 33(1), 1-5. https://doi.org/creativecommons.org/licenses/by/3.0/   DOI
13 Kim, H. S. & Ko, K. S. (2020). Antioxidant and anti-inflammatory effects of ginseng berry ethanol extracts as a cosmetic ingredient. Asian Journal of Beauty and Cosmetology, 18(3), 389-397. http://dx.doi.org/10.20402/ajbc.2020.0052   DOI
14 Lee, T. S. & Chau, L. Y. (2002). Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nature medicine, 8(3), 240-246. https://doi.org/10.1038/nm0302-240   DOI
15 Korean oriental medical university committee of textbook publish (2004). Herbology. Seoul. Younglimsa. http://www.yes24.com/Product/Goods/25254529
16 Kwak, W. J., Han, C. K., Chang, H. W., Kim, H. P., Kang, S. S. & Son, K. H. (2003). Loniceroside C, an antiinflammatory saponin from Lonicera japonica. Chemical and pharmaceutical bulletin, 51(3), 333-335. https://doi.org/10.1248/cpb.51.333   DOI
17 Rang, M. J. (2013). Anti-inflammatory and anti-allergic effects of herbal extracts on atopic dermatitis (Part II). Journal of the Korean Applied Science and Technology, 30(1), 173-182. https://doi.org/10.12925/jkocs.2013.30.1.173   DOI
18 Korean oriental medical university committee of textbook publish (2004). Herbology. Seoul. Younglimsa. http://www.yes24.com/Product/Goods/25254529
19 Chun, J. M. & Bae, J. H. (2015). Preparation of fermented citrus peels extracts for their antimicrobial activity against campylobacter jejuni. Journal of the Korean Society of Food Culture, 30(4), 475-480. https://doi.org/10.7318/KJFC/2015.30.4.475   DOI
20 Lee, J. B., Choi, J. H., Kim, H. T., Kim, Y. K. & Yu, Y. B. (2016). Acute toxicity, Dermal and Ocular Irritation Studies of Taglisodog-eum ointment. Herbal Formula Science, 24(4), 289-300. https://doi.org/10.14374/HFS.2016.24.4.289   DOI
21 Huang, K. G. (1998). The Pharmacology of Chinese herbs. 2nd ed. Boca Ranton. CRC. 388-389. https://www.routledge.com/The-Pharmacology-of-Chinese-Herbs/Huang/p/book/9780849316654
22 Hink, U. & Münzel, T. (2006). COX-2, Another Important Player in the Nitric Oxide-Endothelin Cross-Talk: Good News for COX-2 Inhibitors?. Circulation research, 98(11), 1344-1346. https://doi.org/10.1161/01.RES.0000228471.38761.93   DOI
23 Hong, M., Li, S., Tan, H. Y., Cheung, F., Wang, N., Huang, J. & Feng, Y. (2017). A network-based pharmacology study of the herb-induced liver injury potential of traditional hepatoprotective Chinese herbal medicines. Molecules, 22(4), 632. https://doi.org/10.3390/molecules22040632   DOI
24 Shen, T., Chen, X. M., Harder, B., Long, M., Wang, X. N., Lou, H. X. & Zhang, D. D. (2014). Plant extracts of the family Lauraceae: a potential resource for chemopreventive agents that activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway. Planta medica, 80(05), 426-434. DOI: 10.1055/s-0034-1368197   DOI
25 Park, C. H., Jung, H. K., Jeong, Y. S., Hong, J. H., Lee, G. D. & Park, C. D. (2011). Effects of citrus peel ethanol extract on the serum lipid and body fat of high-fat-diet-fed rats. Korean Journal of Food Preservation, 18(4), 567-574. https://doi.org/10.11002/kjfp.2011.18.4.567   DOI
26 Choi, Y. H., Jung, S. C. & Eun, S. Y. (2010). Anti-neuroinflammatory and anti-oxidative activitives of the ethanol extract from Citrus unshiu MARC. The journal of medicine science and life science. 7(1): 88-93. https://oak.jejunu.ac.kr/handle/2020.oak/9340
27 Mills, E. L. & O'Neill, L. A. (2016). Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. European journal of immunology, 46(1), 13-21. https://doi.org/10.1002/eji.201445427   DOI
28 Shan, Y., Lambrecht, R. W., Donohue, S. E., Bonkovsky, H. L., Shan, Y., Lambrecht, R. W. & Bonkovsky, H. L. (2006). Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. The FASEB Journal, 20(14), 2651-2653. https://doi.org/10.1096/fj.06-6346fje   DOI
29 Waxman, K. (1996). Shock: ischemia, reperfusion, and inflammation. New horizons (Baltimore, Md.), 4(2), 153-160. https://europepmc.org/article/med/8774791
30 Ren, K. & Torres, R. (2009). Role of interleukin-1β during pain and inflammation. Brain research reviews, 60(1), 57-64. https://doi.org/10.1016/j.brainresrev.2008.12.020   DOI
31 Madhu, B. P., Singh, K. P., Saminathan, M., Singh, R., Shivasharanappa, N., Sharma, A. K. & Manjunatha, V. (2016). Role of nitric oxide in the regulation of immune responses during rabies virus infection in mice. Virusdisease, 27(4), 387-399. https://doi.org/10.1007/s13337-016-0343-7   DOI
32 Otterbein, L. E. & Choi, A. M. (2000). Heme oxygenase: colors of defense against cellular stress. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279(6), L1029-L1037. https://doi.org/10.1152/ajplung.2000.279.6.L1029   DOI
33 Tsan, M. F. (2006). Toll-like receptors, inflammation and cancer. In Seminars in cancer biology (Vol. 16, No. 1, pp. 32-37). Academic Press. https://doi.org/10.1016/j.semcancer.2005.07.004   DOI
34 Huang, Y., Li, W., Su, Z. Y. & Kong, A. N (2015). The complexity of the Nrf2 pathway: beyond the antioxidant response. The Journal of nutritional biochemistry, 26(12), 1401-1413. https://doi.org/10.1016/j.jnutbio.2015.08.001   DOI
35 Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H. & Yamamoto, M. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nature communications, 7(1), 1-14. doi:10.1038/ncomms11624 (2016).   DOI
36 Thimmulappa, R. K., Scollick, C., Traore, K., Yates, M., Trush, M. A., Liby, K. T. & Biswal, S. (2006). Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochemical and biophysical research communications, 351(4), 883-889. https://doi.org/10.1016/j.bbrc.2006.10.102   DOI
37 Kamei, Y., Sueyoshi, M., Hayashi, K. I., Terada, R. & Nozaki, H. (2009). The novel anti-Propionibacterium acnes compound, Sargafuran, found in the marine brown alga Sargassum macrocarpum. The Journal of antibiotics, 62(5), 259-263. https://doi.org/10.1038/ja.2009.25   DOI