• 제목/요약/키워드: theory lattice

검색결과 164건 처리시간 0.021초

유기 리간드 존재하에서 $FeS_{(S)}$의 중금속 제거 특성 연구 (Studies on the Heavy Metal Removal Characteristics of $FeS_(S)$ in the Presence of Organic Ligand)

  • 박상원;박병주
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.411-417
    • /
    • 1999
  • The interfacial chemical behavior, lattice exchange and dissolution, of $FeS_{(S)}$ as one of the important sulfide minerals was studied. Emphases were made on the surface characterization of hydrous $FeS_{(S)}$, the lattice exchange of Cu(II) and $FeS_{(S)}$, and its effect on the dissolution of $FeS_{(S)}$, and also affect some organic ligands on that of both Cu(II) and $FeS_{(S)}$. Cu(II) which has lower sulfide solubility in water than $FeS_{(S)}$ undergoes the lattice exchange reaction when Cu(II) ion contacts $FeS_{(S)}$ in the aqueous phase. For heavy metals which have higher sulfide solubilities in water than $FeS_{(S)}$, these metal ions were adsorbed on the surface of $FeS_{(S)}$. Such a reaction was interpreted by the solid solution formation theory. Phthalic acid(a weak chelate agent) and EDTA(a strong chelate agent) were used to demonstrate the effect of organic lignads on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. The $pH_{zpc}$ of $FeS_{(S)}$ is 7 and the effect of ionic strength is not showed. It can be expected that phthalic acid has little effect on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. whereas EDTA has very decreased the removal of Cu(II) and $FeS_{(S)}$. This study shows that stability of sulfide sediments was predicted by its solubility. The pH control of the alkaline-neutralization process to treat heavy metal in wastewater treatment process did not needed. Thereby, it was regarded as an optimal process which could apply to examine a long term stability of marshland closely in the treatment of heavy metal in wastewater released from a disussed mine.

  • PDF

금속의 특성 및 금속수소화물의 팽창에 관한 수치해석 (Numerical Study on Properties of Metals and Expansion of Metal Hydrides)

  • 정영관;박규섭
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.257-265
    • /
    • 2004
  • Numerical analysis, as EAM(Embedded Atom Method), in the atomic level is necessary to analyze the relation between the hydrogen and hydrogen absorption metals. EAM established on density functional theory was developed as a new means for calculating various properties and phenomena of realistic metal systems. In this study, we had constructed the EAM program from constitutive formulae and parameters of the hydrogen, nickel and palladium for the purpose of predicting the expansion behavior on hydrogen absorbing. In result, not only the ground state properties of metals but also lattice constants and the volume expansion ratio of metal hydrides show good agreement with Daw's data and experiment data.

The Fundamental Understanding Of The Real Options Value Through Several Different Methods

  • Kim Gyutai;Choi Sungho
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.620-627
    • /
    • 2003
  • The real option pricing theory has emerged as the new investment decision-making techniques superceding the traditional discounted cash flow techniques and thus has greatly received muck attention from academics and practitioners in these days the theory has been widely applied to a variety of corporate strategic projects such as a new drug R&D, an internet start-up. an advanced manufacturing system. and so on A lot of people who are interested in the real option pricing theory complain that it is difficult to understand the true meaning of the real option value. though. One of the most conspicuous reasons for the complaint may be due to the fact that there exit many different ways to calculate the real options value in this paper, we will present a replicating portfolio method. a risk-neutral probability method. a risk-adjusted discount rate method (quasi capital asset pricing method). and an opportunity cost concept-based method under the conditions of a binomial lattice option pricing theory.

  • PDF

A Theory of Polymer Adsorption from Solution

  • Lee, Woong-Ki;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권1호
    • /
    • pp.19-26
    • /
    • 1987
  • A statistical thermodynamical treatment for polymer adsorption from solution is presented. The canonical partition function for the polymer solution in the presence of a surface or an impermeable interface is formulated on the basis of usual quasi-crystalline lattice model, Bragg-Williams approximation of random mixing, and Pak's simple treatment of liquid. The present theory gives the surface excess ${\Gamma}_{exc}$ and the surface coverage ${\phi}^s_2$ of the polymer as a function of the chain length x, the Flory-Huggins parameter x, the adsorption energy parameter $x_s$, and polymer concentration $v_2$. Present theory is also applicable to the calculation of interfacial tension of polymer solution against water. For the idealized flexible polymer, interfacial tensions according to our theory fit good to the experimental data to the agreeable degrees.

Ligand Field Approach to $4d^{1}$ Magnetism Based on Intermediate Field Coupling Scheme

  • 최진호;김종영
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.976-981
    • /
    • 1997
  • The magnetic susceptibilities of molybdenum ions with 4d1 electronic configuration in the octahedral crystal field were calculated on the basis of ligand field theory. The experimental magnetic susceptibilities for molybdenum ions, which are stabilized at the octahedral site in the perovskite lattice of Ba2ScMoⅤO6 and Sr2YMoⅤO6, were compared with the theoretical ones. We have tried to fit their temperature dependence of magnetic susceptibility with ligand field parameters, spin-orbit coupling constant ζSO, and orbital reduction parameter κ according to intermediate field coupling and strong field theory. Strong field coupling theory could not explain experimental curves without unrealistically large axial ligand field, since it ignores the mixing up between different state via spin-orbit interaction and ligand field. On the other hand, the intermediate field coupling theory could successfully reproduce experimental data in octahedral and trigonal ligand field. The fitting result demonstrates not only the fact that spin-orbit interaction is primarily responsible for the variation of magnetic behavior but also the fact that effective orbital overlap, enhanced by cubic crystal structure, reduces significantly orbital angular momentum as indicated by κ parameter.

Joint Lattice-Reduction-Aided Precoder Design for Multiuser MIMO Relay System

  • Jiang, Hua;Cheng, Hao;Shen, Lizhen;Liu, Guoqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.3010-3025
    • /
    • 2016
  • Lattice reduction (LR) has been used widely in conventional multiple-input multiple-output (MIMO) systems to enhance the performance. However, LR is hard to be applied to the relay systems which are important but more complicated in the wireless communication theory. This paper introduces a new viewpoint for utilizing LR in multiuser MIMO relay systems. The vector precoding (VP) is designed along with zero force (ZF) criterion and minimum mean square error (MMSE) criterion and enhanced by LR algorithm. This implementable precoder design combines nonlinear processing at the base station (BS) and linear processing at the relay. This precoder is capable of avoiding multiuser interference (MUI) at the mobile stations (MSs) and achieving excellent performance. Moreover, it is shown that the amount of feedback information is much less than that of the singular value decomposition (SVD) design. Simulation results show that the proposed scheme using the complex version of the Lenstra--Lenstra--Lovász (LLL) algorithm significantly improves system performance.

Brownian Dynamics 를 이용한 입자 포집 과정 및 여과 성능 해석 (Analysis of Filtration Performance by Brownian Dynamics)

  • 방종근;윤웅섭
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.811-819
    • /
    • 2009
  • In the present study, deposition of discrete and small particles on a filter fiber was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation. And Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector for considering complex shape of deposit layer. Interaction between the flow field and the deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated with filtration theory and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

기계적 격자이론에 의한 도로포장 구조물의 피로수명과 누적손실분석 (Fatigue Life and Cumulative Damage Analysis in the Pavement Structure by Mechano-Lattice Theory)

  • 임평남
    • 대한교통학회지
    • /
    • 제6권2호
    • /
    • pp.21-33
    • /
    • 1988
  • 부적정한 도로포장 구조물의 설정 및 유지보수의 적정관리 미흡으로 표면의 피해와 소성변형이 장기간 발생된다. 이로 인한 가요성 통제 구조물의 파괴 원인은 일반적으로 포 장재료의 동질성, 선형탄성 상태의 가정 하에서 분석되었다. 그러나 아스팔트 재료의 특성은 엄밀히 분석해서 완전한 선형탄성이라고는 볼 수 없음은 잘 알려져 있다. 따라서 근본적으 로 포장체의 수명과 파양 예측에 오류 발생가능성이 높다 하겠다. 금번 연구는 이와 같은 종전의 경험적인 선형탄성 방법이 아닌 탄성일소성 상태하의 격자(mechano-lattice) 이론이란 새로운 기법을 도입하였다. 특히 마이너(Miner's Law) 이론의 누적손실과 확률을 적용하여 포장체의 피노수명과 손실을 예측할 수 있다. 금번 이론은 실제로 호주 빅토리아주의 멜보른(Melbourne)시 일부 지역구간을 모형으 로 선정되었다. 분석결과 가장 최적화된 도로포장 각층의 두께와 재료 선정을 하기 위하여 일정기간의 교통량, 상대적 손실지수와 잔여응력 및 표면 변위, 대기온도 그리고 습도의 영 향을 종합적으로 고려하여야 한다.

  • PDF

Percolation Theory-Based Exposure-Path Prevention for 3D-Wireless Sensor Networks Coverage

  • Liu, Xiaoshuang;Kang, Guixia;Zhang, Ningbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.126-148
    • /
    • 2015
  • Different from the existing works on coverage problems in wireless sensor networks (WSNs), this paper considers the exposure-path prevention problem by using the percolation theory in three dimensional (3D) WSNs, which can be implemented in intruder detecting applications. In this paper, to avoid the loose bounds of critical density, a bond percolation-based scheme is proposed to put the exposure-path problem into a 3D uniform lattice. Within this scheme, the tighter bonds of critical density for omnidirectional and directional sensor networks under random sensor deployment-a 3D Poisson process are derived. Extensive simulation results show that our scheme generates tighter bounds of critical density with no exposure path in 3D WSNs.

극대화된 밴드갭을 갖는 켈빈 격자 구조의 아이소-지오메트릭 최적 설계 (Isogeometric Optimal Design of Kelvin Lattice Structures for Extremal Band Gaps)

  • 최명진;오명훈;조선호;구본용
    • 한국전산구조공학회논문집
    • /
    • 제32권4호
    • /
    • pp.241-247
    • /
    • 2019
  • 밴드갭은 기계적 파동의 전파가 금지되는 특정 주파수 범위를 의미한다. 본 연구는 경사도 기반의 설계 최적화 방법을 사용하여 낮은 가청 주파수 범위에서 밴드갭을 갖는 3차원 켈빈 격자를 설계하는 것을 목적으로 하고 있다. 블로흐 이론을 이용하여 무한주기 격자에서의 탄성파 전파를 해석하고, 기하학적으로 엄밀한 빔 이론에서 선형화를 통해 얻은 전단 변형 가능한 빔 모델을 사용하여 격자 구조 연결선을 모델링하였다. 주어진 격자 구성에서 중립 축 및 단면 두께를 B-spline 함수를 이용한 아이소-지오메트릭 매개화를 통해 설계 변수로 정의하고, 격자 구조의 밴드갭의 크기를 극대화하는 최적 설계를 수행하였다.