• Title/Summary/Keyword: the vibration analysis

Search Result 9,890, Processing Time 0.036 seconds

WAVELET ANALYSIS OF VEHICLE NONSTATIONARY VIBRATION UNDER CORRELATED FOUR-WHEEL RANDOM EXCITATION

  • Wang, Y.S.;Lee, C.M.;Zhang, L.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.257-268
    • /
    • 2004
  • The wavelet analysis method is introduced in this paper to study the nonstationary vibration of vehicles. A new road model, a so-called time domain correlated four-wheel road roughness, which considers the coherence relationships between the four wheels of a vehicle, has been newly developed. Based on a vehicle model with eight degrees of freedom, the analysis of nonstationary random vibration responses was carried out in a time domain on a computer. Verification of the simulation results show that the proposed road model is more accurate than previous ones and that the simulated responses are credible enough when compared with some references. Furthermore, by taking wavelet analysis on simulated signals, some substantial rules of vehicle nonstationary vibration, such as the relationship between each vibration level, and how the vibration energy flows on a time-frequency map, beyond those from conventional spectral analysis, were revealed, and these will be of much benefit to vehicle design.

A Study on the Random Vibration Analysis of Large Scale Antenna (대형 안테나의 Random Vibration 해석에 관한 연구)

  • Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.44-50
    • /
    • 2021
  • This study analyzed the stability of antenna equipped on vehicles by the link of modal analysis and random vibration analysis with the vibration data of MIL-STD-810H, METHOD 514.8. As a result of the random vibration analysis of antenna, the maximum equivalent stress 41.9MPa and minimum margin of safety 8.37 was generated in the bracket of antenna by the vertical direction vibration. Thus, it was found that antenna has enough stability during the operation.

A Malfunction Pattern Distinction of an Automotive Electric part by Sound and Vibration Frequency Analysis (소음진동 주파수분석을 이용한 자동차 전동부품의 고장유형 분석)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.107-112
    • /
    • 2021
  • The usage of electric-powered components consisting of several electrical and mechanical parts is continuously increasing in automobiles. Therefore, continuous assessment of the reliability and quality of these electric-powered parts is crucial. In this study, a noise and vibration measurement system for testing and evaluating the different electric-powered parts of automobiles was designed. Further, an FFT analysis was performed on some electric-powered steering assembly test equipment. In the FFT analysis of the noise and vibration signals for each essential fault part, the vibration FFT analysis was significantly compared with the noise analysis. The results showed that the vibration FFT analysis was more effective in determining the reliability and quality of the electric-powered parts.

Validation of Vibration and Stress Analysis Method for APR1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program (APR1400 원자로내부구조물 종합진동평가프로그램 진동 및 응력해석 방법 검증)

  • Kim, Kyu Hyung;Ko, Do Young;Kim, Sung Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.308-314
    • /
    • 2013
  • The vibration and stress analysis program of comprehensive vibration assessment program(CVAP) is to theoretically verify the structural integrity of reactor vessel internals(RVI) and to provide the basis for selecting the locations monitored in measurement and inspection programs. This paper covers the applicability of the vibration and stress analysis method of APR1400 RVI CVAP. The analysis method was developed to use 3-dimensional detail hydraulic and structural models with ANSYS and CFX. To assess the method, the hydraulic loads and structural reponses of OPR1000 were predicted and compared with the measured data in the OPR1000 RVI CVAP. The results predicted with this method were close to the measured values considerably. Therefore, the analysis method was developed properly.

A Structural Vibration Analysis of the Air-Operated Valve (공기구동밸브의 구조진동해석)

  • Lee, Hyun-Seung;Lee, Young-Shin;Cho, Taek-Dong;Shin, Sung-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.945-948
    • /
    • 2004
  • A free vibration analysis of air-operated valve(AOV) is investigated. The vibration characteristics of AOV with size variations are studied. The effects of inner pressure on the natural frequencies are also studied. The analytical results are compared with expermental results.

  • PDF

Vibration Analysis of a Refrigerator Using Component Synthesis Method (부분구조합성법을 이용한 냉장고의 진동해석)

  • 김석관;김성대;임기수
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.253-257
    • /
    • 1993
  • In this study, vibration analysis of a refrigerator was carried out to reduce vibration induced noise. When the components of a machine are assembled together, the natural frequencies of each component are changed since they have influences on one another. To avoid the problem of resonance, the vibration characteristics of each component must be checked systematically after they are designed. For this purpose, vibration analysis of a refrigerator was done using a component synthesis method. The experimental and analytical results showed good agreement and are presented here.

  • PDF

Development of the Optimal Design Technique for the Pneumatic Vibration Isolation System by Nonlinear Modeling and Analysis (공압방진시스템의 비선형 모델링과 해석을 통한 최적설계기술 개발)

  • 문준희;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.151-154
    • /
    • 2001
  • The pneumatic vibration isolation systems have been widely used in industry and laboratories, but the full mathematical analysis and nonlinear modeling techniques have not been reported yet, even while the nonlinear features of the pneumatic vibration isolation system decide the main characteristics. For instance, the orifice in a pneumatic vibration isolator has been traditionally considered as a simple viscous damper, which was too much simplified to explain the performance of the isolation system. In this paper, the nonlinear characteristics are considered for the orifice and chamber, etc. The numerical simulation is carried out by the MATLAB/Simulink software. From the analysis result, a clear trend of the nonlinear features is shown: the vibration transmissibility changes not only due to the excitation frequency but also due to the amplitude of the vibration excitation. Therefore various design parameters are optimally chosen for the vibration isolation system. The proposed methods show good compatibility between the analysis results and the experiments.

  • PDF

Analysis and Countermeasure for Escalator Vibration (에스컬레이터 진동 분석 및 대책)

  • Lim, Su-Young;Kwon, Yi-Sug;Park, Seon-Ryong;Hong, Seong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.984-989
    • /
    • 2000
  • This paper deals with an analysis and countermeasure of escalator vibration. The vibration characteristics of escalators are studied theoretically and experimentally to find the main cause of severe vibration. The main source of vibration in escalators is found to be chordal effect due to the step chain and sprocket system. It is also found that the vibration become significantly large at so called no load condition, in which the load due to passengers, during down-moving, is equal to the resistive force in the driving system. Dynamic absorbers are implemented to suppress the vibration. A theoretical analysis is made to determine the appropriate dynamic absorber. Theoretical and experimental study shows that dynamic absorber is effective to suppress the vibration in escalators.

  • PDF

Design and Experiment of an Electromagnetic Vibration Exciter for the Rapping of an Electrostatic Precipitator

  • Kim, Je-Hoon;Kim, Jin-Ho;Jeong, Sang-Hyun;Han, Bang-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The miniaturization of an electrostatic precipitator has become a key element in successfully constructing an efficient electrostatic precipitator because of the limited space allowed for installation in a subway tunnel. Therefore, the miniaturization of the rapping system of the electrostatic precipitator has also become important. This research proposes a resonant-type electromagnetic vibration exciter as a vibrating rapper for an electrostatic precipitator. The compact vibrating rapper removes collected dust from the collecting plates without direct impact on those collecting plates. To characterize the dynamic performance of the electromagnetic vibration exciter, finite element analysis was performed using a commercial electromagnetic analysis program, MAXEWLL. Moreover, we analyzed the resonant frequency of an electrostatic precipitator, to which the electromagnetic vibration exciter was applied, by ANSYS. Also, to measure the acceleration generated by the electromagnetic vibration exciter, we manufactured a prototype of the ESP and electromagnetic vibration exciter and measured its acceleration at the resonant frequency.

Structural vibration in Escalators :(II) Analysis and Countermeasure (에스컬레이터의 구조적 진동 : (II) 분석 및 대책)

  • 임수영;권이석;박선용;홍성욱
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.830-837
    • /
    • 2000
  • This paper deals with an analysis and countermeasure of escalator vibration. The vibration characteristics of escalators are studied theoretically and experimentally to fine the main cause of severe vibration. The main source of vibration in escalators is found to be chordal effect due to the step chain and sprocket system. It is also found that the vibration become significantly large at so called no load condition, in which the load due to passengers, during down-moving, is equal to the resistive force in the driving system. Dynamic absorbers are implemented to suppress the vibration, A theoretical analysis is made to determine the appropriate dynamic absorber. Theoretical and experimental study shows that dynamic absorber is effective to suppress the vibration in escalators.

  • PDF