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ABSTRACT-The wavelet analysis method is introduced in this paper to study the nonstationary vibration of vehicles. A
new road model, a so-called time domain correlated four-wheel road roughness, which considers the coherence
relationships between the four wheels of a vehicle, has been newly developed. Based on a vehicle model with eight degrees
of freedom, the analysis of nonstationary random vibration responses was carried out in a time domain on a computer.
Verification of the simulation results show that the proposed road model is more accurate than previous ones and that the
simulated responses are credible enough when compared with some references. Furthermore, by taking wavelet analysis
on simulated signals, some substantial rules of vehicle nonstationary vibration, such as the relationship between each
vibration level, and how the vibration energy flows on a time-frequency map, beyond those from conventional spectral
analysis, were revealed, and these will be of much benefit to vehicle design.

KEY WORDS : Wavelet analysis, Time-frequency map, Vehicle nonstationary vibration, Correlated four-wheel random

excitation.
NOMENCLATURE
my  : mass of the vehicle body
J, : pitch moment of inertia of the vehicle body
J. : roll moment of inertia of the vehicle body
my : left half mass of the front axle (including tyre)
my;  :right half mass of the front axle (including tyre)
m, : mass of the rear axle (including tyres)
Iy : angle moment of inertia of the rear axle
m : mass of the human being and seat
kg - stiffness of a front tire
k., . stiffness of a rear tire
k; : spring stiffness of the front suspension
k, : spring stiffness of the rear suspension
k, . stiffness of the seat
ot : damping coefficient of the front suspension
¢, : damping coefficient of the rear suspension
c : damping coefficient of the seat
[, : horizontal distance from the m; to the front axle
l, : horizontal distance from the m, to the rear axle
L : half distance between the two front springs
I : longitudinal horizontal distance from the m; to m;
L - half-distance between the two rear springs
ls : half-distance between the two front wheels
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L, : transverse horizontal distance from the mj to m,
Iy : half-distance between the two rear wheels
Zy : vertical displacement of the vehicle body
o, : roll angle of the vehicle body

o5 : pitch angle of the vehicle body

Z, : vertical displacement of the m,

Z; : vertical displacement of the m,

Z, : vertical displacement of the m;,

Z : vertical displacement of the rear axle

VA : angular displacement of the rear axle
SUBSCRIPTS

L : left wheel

R : right wheel

! : front wheel

r : rear wheel

1. INTRODUCTION

As the standard of living has been improving, people are
more concerned about the ride comfort of their cars. To
improve the ride comfort, a great deal of research on
vehicle vibration systems including road roughness was
issued from theory and experiment fields in the past few
decades. Most of these research works were based on
linear or nonlinear models such as SDOF and MDOF
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with road excitations in terms of PSD (power spectral
density) (Dodds et al., 1973; Renucci et al., 1976) or time
course (Zhang, 1986; Wang and Wu, 1987; Yu and Guo,
1998), Some research involved the parameter optimization of
passive suspension (Dokainish et al., 1980; Hac, 1985;
Shi et al., 1995), and moreover, the active and semi-active
suspension development (Thompson et al., 1984; Haday
et al., 1989; Esmailzadeh er al., 1997; Yu and Guo,
1998). It can be seen that most of the research mentioned
above assumed that the vehicles were running at certain
constant speeds, therefore, were regarded as a stationary
random process. Actually, in more usual cases such as
starting, accelerating and braking, vehicles work under
variable speed conditions, and its vibration should be
considered as a nonstationary process accordingly (Zhang et
al., 2002). Because of theory restriction, however, there
are only a few of approaches to this topic that have been
developed. In this paper, a new road-roughness model
with four-wheel input was established and, furthermore, a
set of methods for nonstationary vibration simulation was
proposed, based on a full-vehicle model with eight
degrees of freedom.

In the signal processing field, Fast Fourier Transform
(FFT), a very effective approach for stationary signals,
was widely used in vehicle engineering (Welch, 1967,
Newland, 1984; Brigham, 1988). It can be utilized to
extract time-averaged energy information from a signal
segment with time length 7 only in frequency domain,
but nothing remains in time domain. For nonstationary
signals, both the frequencies and their magnitudes vary
with time so that FFT cannot deal with them properly. To
solve this problem, many time-frequency analysis (TFA)
algorithms have been developed in recent years. Typical
implementation examples are the short-time Fourier
Transform (STFT) (Hodges et al., 1985), Wigner-Ville
distribution (WVD) and its improved version smoothed
pseudo-Wigner-Ville distribution (SPWVD) (Baydar et
al., 2001), the wavelet transform (WT) (Daubechies,
1990), and so on. The advantages and drawbacks of these
methods have also been discussed (Gade er al., 1996).
The WT as “Mathematical Microscope” in engineering
(Chen, F. S., 1998) allows the changing spectral
composition of a nonstationary signal to be measured and
presented in the form of a time-frequency map and thus,
was suggested as a tool for nonstationary vibration
analysis (Newland et al., 1994). Therefore, instead of the
conventional FFT method, the Continuous Wavelet
Transform (CWT) as well as the Discrete Wavelet
Transform (DWT) were first applied to study the
nonstationary inputs and responses of the vehicle
vibration system in this paper, and some valuable
conclusions beyond FFT are deduced from the time-
frequency map.

2. SYSTEM MODELING

2.1. Modeling of the Vehicle Vibration System
This paper built a dynamic model of a full vehicle with
eight degrees of freedom, shown in Figure 1, on the
assumption that the vehicle has symmetrical weight with
respect to X axis, and road inputs are isotropic ergodic
processes, ignoring tire damping and any other vibration
sources except for road roughness. The X axis points to
the running direction of the vehicle, and the origin of the
coordinate system is at the center of gravity of the vehicle
body.

The differential equation of the above model can be
easily derived from the Lagrange equation as,

[MI{Z}+ [CUZ} +[KI{Z} = [PII(D)} 0y

Where, [M]denotes the mass matrix,

m 0000 000
0my000 0 00
00J00 000
M= |0 00J 0000
0000m 0 00
00000mO0 0
00000 0m 0O
00000 0 0J,

[C] denotes the damping matrix,

c, -c¢, —-cs —cd; O 0 0
—C Cn  Cxn ol —¢; —¢; 2c,
—cly ¢ cn oy —cd =i, 2c¢.d,
(C]= —cl; ¢y clyly cu —cdy ¢y O
0 —¢; ~¢idy —¢dy ¢ 0 O
0 —¢ —di cln 0 ¢ O
0 -2¢,-2¢1, O 0 0 2
L0 0 0 25 0 0 0 2 lﬁj

|
OOOQNOOO
~
(VS

Here, c;=2cq+2c,+c ciy=cn=2cd,—2¢,l+c d,
cu=2cd*+2cL+c ) cu=2cl+2c I+l

[K] denotes the stiffness matrix,

[K]=

k, -k, —kl, -k, 0 0 0 0O
—k, kyn  kyn kil —k, —k; -2k, O
ks ks ks kil —kdy ~kd, 2k0, O
—kdy ks kil ke —kdy kds 0 2k,

0 -k ki —kiy ks O 0 0
0 —k ki, ki, O kg O O
0 2k 2kl, 0 0 0 kn O
0 0 0 =2k 0 0 0

2k, 13
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Here, ky=2k2k+k,  ky=ky=2kl -2k l+kl,
kas=2kd P42k 1k ] koy=2k 1+ 2k 1P +k 1
k55=k66:kf+k!f k77=2k,.+2k[r

[P] denotes the transfer matrix from the road disp-
lacement vector, {I(r)} to the force excitation vector,

0000k, 00 0| 1;(1)

0000 0 O k, k. /s (1)
P= tr i ]t =
=0 0000k 0 0 | YO\ L

00000 0k, kil L(1)

{7}, {2z}, {1z} are the system response vectors,
{z}=lz, zs O 6, Zn Zpr 2 9,]7

Multiply both sides of Equation (1) by [M] ", and let
[Al=—IMI'[C],  [BI=-IMI'[K], {I'0}=[M1{I()},
{x}=[{z}{z})" and {i}=({z}{z}], the system state
equation can be expressed as,

: [0]sxs [Elsws {0} }

X hex= XhioxiHY ., 2
Hihes [[B]m [AJSXJ{ b {{Im}gxl @
Here {x} is the state transfer vector with 16 dimension;

[E] is the unit matrix, and {I’(¢)} is the vector of force
excitation, {I'(¢)}=[P]{I(t)}.

2.2. Modeling of Correlated Four-wheel Road Roughness
in the Time Domain

The filtered white-noise method was introduced in this
paper. The essence of this method is to abstract some
signals from an assumed system, in which a white-noise
vector is regarded as an input. It can be described in
mathematics as,

LD }=[AHIN I+ BHW()} 3

Where, {1(t)Y=[1,(1), L,(t), [,(1), ...1.(t)]" is the road
roughness vector; { W(#)}=[W,(¢), Wy(1r), W,(2), ...

Zol == e
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gg“}(‘\\@
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Figure 1. Dynamic model of a vehicle with 8 DOFs.
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Figure 2. Sketch for a four-wheel vehicle.

W,(6)]” is a row vector that consists of a white-noise
series with a zero mean value each; ¢ is time; [A], [B] are
coefficient matrixes,

-aV 0 b 0

[A]= B]=| 7

0 _avnxn 0 b nxn

Here a, b are the constant coefficients, a=2mn,,
b=2m.JG,V, V is the vehicle velocity, n, is the cut-off
frequency, n,=0.01-0.1 ¢/m.; G, is the road coefficient,
represent different grades of road. Note, if the vehicle
velocity is constant, the assumed system described in
Equation (3) is linear, and it may be feasible to study the
correlation of road signals (system output) by studying
the correlation of the white-noise series (system input).

For a four-wheel vehicle, the dimension # in the above
model is 4, representing the left front wheel, right front
wheel, left rear wheel and right rear wheel respectively.
And the corresponding white-noise series is defined by
Wi, Wi Wi, We, (see Figure 2). The road model for a
four-wheel vehicle can be derived from the discussions of
both the left-right tread correlation and the front-rear
wheel correlation as follows.

2.2.1. Correlation between the left and right wheels
Assuming that the studied road surface is uniform, and
the left and right wheel threads have isotropic statistic
characteristics, the relationship between the transfer
function and the coherence function of the left and the
right wheels may be expressed as,

|[H(ow)|=coh(w) €

Equation (4) is proved in the Appendix, according to the
random vibration theory. Here the coh(w) has been
obtained from a road simulator, which is made by the
MTS, by Changchun Automotive Research Institute of
China, using a sample truck (CA141) at a forward speed
of 50 km/h. Its expression is,

®)

col(w)= 1-0450 ow<2nradls
0.1 ®>2rradls
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According to modern control theory, the transfer
function Wp(s) between W,; and W, may be shown as the
following form,

Wels)_bo+bys+b,s°+ - +b,s"
Wi ls) ap+as+as’+ - +a,s

Wi (s)= ©)
Thus,

(@)W ()=t bl @ rbao)' s +b,Go)] (7
a0+ a,(j0)+a:(jo) + +a, ()]

Where: Wei(s), W, (s) are the Laplace transform of Wy,
and W,, s is the Laplace operator, a,, a;, a,, ..., a,, by, by,
b, ..., b, are the coefficients, and can be carried out from
Equations (4), (5) and (7) by optimization principles. The
target function selected for optimization is,

n

min 2, ||H(@)|—-coh()] 3

i=1
And the constraint condition,
0< w;£50radls (9a)
|H(w)|-coh(w)] <€ (9b)
Where: ¢ is a small positive value.

In order to simplify the calculation, a third-order
approximate formula is adopted, such as,

bo+b15+bzsz+b3s3 — (bo—bzw?)""(blwi—b}aﬁl'

Whei(s)=
RL( ) (ao_aza)?)+(a]w;—a3w?)j

2 3
Qota,s+a,s +a,s

Let £ be equal to 0.05, and @, (i=1 2, 3, ..., n) equals 0 0.5,
1.0, ..., 50 in Equation (7). By the optimization program,
the obtained coefficients are: ,=3.2230, «,=0.5900,
a,=0.0327, b,=3.1815, b=0.2063, ,=0.0108, a,=b,=0.
Substituting them into Equation (10) gives the plots of the
amplitude and phase as functions of the angular
frequency (see Figure 3 and 4). A good agreement of the
amplitudes can be seen from Figure 3. The curves
indicate that the coefficients have enough precision to
substitute the coherence function with the transfer
function and the phase angle between the left and right
wheel approach to zero. Dividing the numerator and
denominator of Equation (10) by s* produces,

Weds) _bos” +bis™ + b,

Weo(s)= = 11
wls) Wils) aps™ +a,s" +a, (n

Setting an intermediate variable,

m(s)=—uls) (12)

-2 -1
ags +a,;s +a;

Then, Wes)=m(s) - (bos” +bys™ + b)) (13)

‘ — ’coh(cla)
— |H{m)|

0 W M 3\ 40 s B 0 83 90
Angular frequency @

Figure 3. Amplitude versus angular frequency.
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Figure 4. Phase versus angular frequency.
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Figure 5. Systemic state-block diagram.

Therefore, the state equation of the correlation
between the left and right wheels can be derived from
Equations (12) and (13) as Equation (14), referring to the
systemic state block diagram in Figure 5.

X, 0 1 X 0
= - W
o, [ L) e

LIRS
(25} Z:I[XZJ'FbZ WLf

(14a)

W,{,:[ao—agl%) a - (14b)
2
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2.2.2. Correlation between the front and rear wheels
As is known, the input of the rear wheel must be later
than that of the front wheel for a time difference T, T,=L/
V. Therefore, the relationship between W, and W,, may
be expressed as,

Wedt)=W,, (t - Th)=W1,f(t)eijmh (15)

Where, L, V, t represent the wheelbase, the forward
velocity of the vehicle and time, respectively. Taking the
Laplace transform of both sides of Equation (15) yields,
Wi $)=W_(s)/W [s)=¢ .

Using the Pade approximate method supplies,

> (1) PATys)"
WLr(S)_i:]
Wils) &
S pTsy

i=1

(16)

Here P,(n=1, 2, 3, ..., N) is a set of constant coefficients,
P=1/2, P,=1/12, .... Retaining the first three terms of the
numerator and denominator, respectively,

1 _ Th s+ =L Th
WLr(S)= 12 (17)
Wi (s) 1 5_’_ T;, §2
2 'R?

Following the same process as that in 2.2.1, the state
equations concerning the hysteresis between the front and
rear wheels becomes,

X3 |_ 0 1 X3 + 0 W,
[x;l—— 1 -12/T;, l:m} {12/7?,] N

W,=[0 T,,][ }rw”

(18a)

(18b)

2.2.3. Correlation of four-wheel model of road roughness
After establishing the correlations of W, Wy-and W,,, Wp,
may be gotten easily from Equations (13) and (17),

We=[0 -T,] By ao—azﬁ a —aoh XI (19)
X4 b’l bz X2

Table 1. Parameter values of the sample vehicle.

The treatment of the above model equations is
somewhat less straightforward. Let us pursue intuitive
description further. Combining Equations (14), (18), (19)
and substituting them into Equation (3), the final road
model regarding the correlation characteristic of four
wheels can be described as follows,

{i(1)}=[A]- {I()}+27JGoV - [B.,.] - {x(1)}

+27JGoV - [B,] - Wo,(1) (20a)
{x(0)}=[A] - {x(D)}+{B.} - Wi (1) (20b)

Where: {x(¢)} is the state transfer vector; {B,}, {B.},
{B,.} and [A,] are the coefficient matrixes,

1) x(1) 1 0
L) _Jx( _ az/bz _| b,
{I}= 1.(1) {x(D}= i(0) {B,}= B3=)
1,(1) x40 az/bz 12/T;
| 0 00] o 1 0 0]
by by
B ( )(al ao) 0 0 Al _E; _b2 0 0
0 O—T 10 0 0 1
T, 6
( 217 )(al ao)b i 0 0 ‘E —T;L

3. SIMULATION

A example, the most common nonstationary vibration
processes, the accelerating and braking processes, of a
passenger car were considered in this paper. The related
parameter values used for the simulation study came
from a bus named LQ91C10 (Lu, S. E, 1988), and are
given in Table 1.

3.1. Simulation of Road Roughness

3.1.1. Verification of the proposed four-wheel road model
The computer simulation of the above road model was
carried out in this paper, using the white-noise series W,
generated by computer as the model input, and
considering the bus runs on a road of grade B

my (kg) J, (kgm’) J, (kgm’) my (kg) my (kg) m, (kg) T,y (kgm?) m, (kg)
7408 37900 8919 205 205 1050 544.6 50
ky (N/m) k., (N/m) k; (N/m) k. (N/m) k, (N/m) ¢y (Ns/m) ¢, (Ns/m) ¢, (Ns/m)
628000 1256000 177600 605800 22072 5020 15108 753
l; (m) L, (m) l; (m) Ly (m) ls (m) ls (m) I; (m) ls(m)
3.06 1.64 0.45 2.34 0.507 0.912 0.884 0.912




262 _ Y. S. WANG, C.-M. LEE and L. J. ZHANG

o2

- = e =5
orﬁ{wMﬁMWL‘m 5 okt et
O:D % 2 4 8 6 L} ) 90’20 2 4 B 8 10
Tima{n) Time {3}

om o
200} ! $ oo
| i § e
3 PR N 2 \ KA (1 U
g agat Y)‘ | é [0t N ! %
@ x

4
Time (3) Time (3}

Figure 6. Time series of the road roughness.
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Figure 7. PSDs of the road roughness.

(G=6.4x10"%) at 50 km/h. The time series of road
elevations can be gotten by Runge-Kutta Method. 1,(2),
L(n), I(t) and I,(r) represent the road displacement input
of left-front, right-front, left-rear and right-rear wheels,
respectively. The simulation results are shown in Figure
6. In general, I,(r), I,(?), L(#) and I,(¢) have maximum
amplitudes within the interval [-0.015m, +0.015m], and
their power spectral densities (PSDs) shown in Figure 7
suggest that they also have the same energy distribution
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Figure 8. Comparison of the PSD of road roughness.
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Figure 9. Comparison of the coherence function.

in the frequency domain.

From ISO/TC108/SC2N67, the theoretical power
spectral density (PSD) of rough road in the frequency
domain can be expressed as,

S,(n)=S,(no)(,%)_2 @1)

Where: S,(n) is the spatial frequency power spectral
density; S,(n,)}, a coefficient of road roughness, can be
obtained from ISO/TC108/SC2N67 according to
different road grades; n is spatial frequency; n, is the
reference spatial frequency, n,=0.01-0.1 ¢/m.

While a vehicle is running with constant speed, the
relationship between vehicle traveling speed v, spatial
frequency n and time frequency f is f=nv. Hence,
Equation (21) becomes,

S, (N=S(n)/v=S,(no)noVIf (22)

Based on Equation (22), the theoretical PSD of road
roughness is carried out, see Figure 8. To verify simulated
results, one of the simulated curves of the PSD was
drawn on the same figure. The comparison shows that the
simulated result is in agreement with the theoretical
value.

The coherence function comparison between the
simulation and testing are shown in Figure 9. The curves
were calculated from the AR (p,0) method (Wang and
Wu, 1987) and Equations (5), (AS) (see Appendix). The
simulated road signal in Figure 6 has a similar coherence
characteristic as the test data that came from the road
simulator. For the independent AR (p, 0) road model,
however, the coherence function values that should have
been zero in theory when used in practice were around
0.1, and the peak value was not more than 0.25.
Definitely, the correlation information was lost in the
low-frequency scope. From Figure 7, the energy of road
inputs were mainly distributed below 10 Hz, therefore,
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the precision of road simulation must have been affected
by the ignorance of the correlation in road modeling in
the past, i.e., the correlated road model developed here is
more accurate than the previous independent ones which
have often been used as system inputs in vehicle vibration
simulations.

Furthermore, the methods of sequence hypothesis
inspection, autocorrelation function and y* inspection
were carried out, and the results show that the above
road-roughness signals have stationarity, periodicity and
normal distribution quality.

3.1.2. Simulation of nonstationary road roughness
Assuming that the sample vehicle starting at an initial

speed v,=0, first accelerating with a constant acceleration

01 0t
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Road roughness
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o]
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Time (s} Time (s)

Figure 10. The road roughness of the four wheels during
the “AAB” process (Grade C).
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Figure 11. Acceleration responses of the vehicle during
the “AAB” process.

a,;=2.5 m/s’ up to v,=60 km/h, and then braking with

another acceleration a,=—4.5 m/s* down to v, therefore,

the instantaneous vehicle speed at any time ¢ may be

expressed as,

V(t):{ Votayt O<t<v,la, (23)
Vatay(t=V,/a) v.la, <t<(V,/a,—V,/a,)

The above process is hereafter called “AAB” process.

Using the Runge-Kutta Method, the time series of road
roughness may be calculated by substituting Equation
(23) into Equation (20), and a set of calculation results of
the road of grade C, for example, are shown in Figure 10.
The calculation parameters are: the sample length is 2000
points; the road coefficient is Gy=2.56x107; the
resolutions of time and frequency are Ar=0.005s and
Af=0.1 Hz, respectively.
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Figure 12. PSDs of the vehicle responses during the
“AAB” process.
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(a) Fourier transform; (b) short-time Fourier transform;
(c) wavelet transform.
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Figure 14. 2D and 3D scalograms result from CWT during the “AAB” process: (a) the vertical vibration of the driver
seat; (b) (c) and (d) the vertical, pitch and roll vibrations of the vehicle body; () the vertical vibration of the front axle;
(f) the road roughness of the right-rear wheel (1,).
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3.2. Simulation of Nonstationary Vehicle Responses
The Runge-Kutta Method can also be used to solve the
vehicle response through Equation (2). Figure 11 shows
the acceleration responses at positions of interest in
Figure 1 during the “AAB” process, and Figure 12 in its
corresponding PSDs. The same calculation parameters as
those in the simulation of road roughness have been
chosen. The validity of the above simulation procedure
was verified by comparing the simulated results with the
theoretically exact solutions (Zhang et al., 2002).

4. WAVELET ANALYSIS (WA)

4.1. Trait of Wavelet Analysis

Wavelet analysis, which provides a perfect filtering
characteristic, has been used extensively, in various fields
of Mathematics, Science, and Engineering. Through the
decomposition and reconstruction of a signal, wavelet
analysis can be performed to determine the transient
identity in the time-frequency domain, and therefore, is
regarded as an effective approach for nonstationary data
processing. The basic theory of wavelet analysis,
including both of the continuous and the discrete
versions, the conception of the scalogram, are briefly in
the Appendix.

To illustrate the speciaity of wavelet analysis, a
comparison of time-frequency resolution between the
conventional Fourier transform, short-time Fourier
transform and the wavelet transform are shown in Figure
13. Apparently, the wavelet transform represents the next
multi-resolution characteristic: a windowing technique
with variable-sized regions. It allows the use of long
intervals where we want more precise low-frequency
information, and shorter regions where we want high-
frequency information. This multi-resolution charac-
teristic exactly meets the requirements of nonstationary
signal processing. Therefore, wavelet analysis is selected
in this paper to study nonstationary signals in vehicle
vibration.

4.2. Wavelet Analysis of Simulation Signals

This paper executes the CWT and DWT by using the
Mallat algorithm (or fast wavelet transform) in the
Matlab toolbox. The Mallat algorithm, a very practical
filtering algorithm, is in fact a classical scheme known as
a two-channel subband coder in signal processing. The
selected parameters for calculation are: the Daubechies
wavelet with a filter length of seven (F,=0.6923 Hz), the
scaling factor a=1-350, i.e., the frequency range: 0.404—

138.5 Hz.

Figure 14(a)—(f) shows the acceleration scalograms,
which were obtained from the CWT, of the seat, vehicle
body, axle and road roughness during the “AAB” process,
respectively. And Table 2 lists the coordinate positions of
the maximum vibration energy that appeared on the time-
frequency map. As seen, the worst ride performance of
the vehicle happened at 8s during the “AAB”, and there
was a 1.4s time delay in the vibrations transfer from road
to the vehicle system. This might be attributed to the
transfer characteristic of the suspension parts. In view of
the frequency, the consistent frequency locations of the
energy peaks have been adopted by comparing the results
from the WT and FFT (see Table 2 and Figure 12).

From Figure 14(a)—(f), in the accelerating process, the
vibration energies of the vehicle are getting bigger,
moving, as well, to the higher-frequency area, their
involved frequency bands are getting broader, and vice
versa in the braking process. Figure 14(f) shows that the
energy of the road roughness mainly distributed below
1.896 Hz, first rolls towards high-frequency with the
increasing of the vehicle speed, and then converges to
low-frequency after the peak velocity of the vehicle. As a
rule, these phenomena of energy flow are transmitted to
the other levels through the suspension system (see the
texture in 2D scalogram of Figure 14(a)—(e)). Figure
14(c) shows that three increasing peaks fluctuate in the
pitching vibration of the vehicle body. The rolling
vibration of the vehicle body, however, is closely tied-up
with the road inputs (see Figure 14(d)).

In view of the vehicle design, the ride comfort of the
passenger seat is the most important to be considered.
Comparing Figure I[4(a)—(f), the energy of road
excitation has been greatly restrained by the suspension
system of the vehicle. However, the similar time-
frequency traits can be seen in (a), (b) and (c), and the
ride comfort of the seat deteriorates suddenly at a certain
running speed. This means that the vertical and the
pitching movement of the vehicle body have more effect
on the vibration of seats than the rolling movement, and
that the vibration energy of the vehicle body flowed into
the resonance frequency region of the seat vibration
system during the “AAB” process. As known from Table
2, the resonant frequency of the vehicle pitching (1.9 Hz),
which is much closer to the seat system (1.6 Hz) than that
of the vehicle bouncing (2.2 Hz), from the view of the
frequency, offers more “contribution” to the seat
vibration. This phenomenon of approximate overlap of
resonance frequencies certainly should be avoided in

Table 2. Coordinate positions of the peaks of vibration energy.

Seat (vertical)  Vehicle body (bounce)

Vehicle body (pitch)

Vehicle body (roll)  Axle (vertical) Road roughness

(8.0s, 1.6 Hz) (7.8s, 2.2 Hz) (8.2s, 1.9 Hz)

(7.8s, 0.9 Hz) (8.0s, 10 Hz) (6.6s, 0.8 Hz)
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vehicle designs. Therefore, for improving the ride
performance of a vehicle, designers have to consider, for
instance, how to match the parameters of the front and
rear suspensions, change the resonant frequency of the
seat, mend the relevant mass, stiffness or damping,
separate the resonance points of the seat and vehicle
body, and so on.

As seen from Figure 14, wavelet transform provided
the “energy flow” map of each examined point of interest
for the vehicle transient vibration with some variable
time-frequency resolutions. During the design stage of
vehicles, it may be adopted to direct vehicle vibration
system designs, especially for the transient working
cases.

A point should be mentioned, to avoid the fair amount
of calculation in CWT, a big sampling interval was used
in the above study, and we could not find a clear view of
the axle vibration in the frequency range of 7.287-138.5
Hz in Figure 14(e). As a supplement, DWT was further
performed on the same axle vibration signal (cut-off
frequency: 200 Hz), and the results show that the
vibration energy is mostly focused on 6.25-12.5 Hz,
which is similar to that in Figure 12.

5. CONCLUSION

This paper presented a set of approaches for solving the
nonstationary vibration problem of road vehicles. Firstly,
in the time domain, a new road model for four-wheel
vehicles was derived by integrating all the correlation
functions into a one-state equation. Comparing with the
previous road models, it is the first time to introduce a
correlation between the left and the right wheels, and
build an integral time domain road model in theory. The
simulated signals of the stationary road approach to the
theoretical and tested curve in some references very well
in both the time and the frequency domains. The
comparison shows that the new road model is more
accurate than the previous ones to simulate the real road
in a time domain. Furthermore, based on a full-vehicle
model with 8 DOFs, the nonstationary vibration process
of starting, accelerating and braking (called AAB) of a
passenger bus, as an example, was simulated in a time
domain.

Finally, wavelet transform techniques including CWT
and DWT were applied to analyze the simulated
nonstationary signals. In contrast to the conventional
Fourier transforms, wavelet transform can focus on any
position on the time-frequency plane through dilating and
translating its wavelet function, and get any detailed
information of interest. The conclusion can be drawn that
wavelet analysis may offer energy spectra information
with respect to time and frequency by specifying the
exact position of the transient characteristics of a

nonstationary signal on a time-frequency map. In the
study of nonstationary vehicle vibration, by comparing
the scalograms of each vibration level and road input, we
may know the status of energy flows, determine the
source of vibrations, and moreover, accomplish the
optimization of the parameters, etc.

It should be mentioned that the work done in this paper
may be generalized to any other type of four-wheel
vehicle running on any grade of road with some given
speed functions or discrete-time series of running speed.
In the design stage of a vehicle, these proposed methods
might be used to simulate, analyze and forecast its ride
performance, either in stationary or nonstationary cases.
Therefore, it may be regarded as an accessorial tool for
vehicle design, especially for active suspension design.
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APPENDIX

A. Relationship Between the Transfer Function and
Coherence Function on Uniform Road Surfaces

For any vibration system, according to the Random
Vibration Theory, the autocorrelation PSD Sy (w) of the
system input, the transfer function H(w) and the cross-
correlation PSD Sy (@) between the system input and
output can be shown as

Sx{ @)=H(0)Sx(®) (AD)

Where: Sy{(@), Sx(@) are all the double-ended power
spectral densities, and  is the angular frequency.

Therefore, the cross-correlation PSD between the right
and left wheels can be shown as,

Si(w)=H(w)S,,(w) (A2)

Here S, () and H(w) are the cross-correlation PSD and
the transfer function between the right and left wheels;
S, () denotes the autocorrelation PSD of the left wheel.
Multiplying both sides of the Equation 4 by 2, thus,

Gl )=H()G (@) (A3)

Gix(w), G, (w) are the single-ended power spectral
densities. G, (@) can also be shown as,

G ®)=IG (@)l 7 (A4)

Where ¢, (w) is the angle of phase, j is the complex
operator. From the definition of coherence function,

coliwy=—1Cut@’ (A5)

G (w)Gre( @)
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Suppose that the studied road surface is uniform, and
that the wheel threads have isotropic statistic
characteristics, ie., Gu(@)=G(®), ¢pr{w) =0.
Combining Equations (A3), (A4) and (AS5), we can
conclude that the amplitude of the transfer function is
equal to the coherence function, ie.,

|[H(w)l=coh(w) (A6)
B. Basic Theory of Wavelet Analysis (WA)

Wavelet analysis is used to decompose or reconstruct a
signal using some wavelets. Wavelets are a family of
orthogonal functions of type,

¥, (t)=|a| " yl(t-b)lal a,be Ra#0 (B1)

generated from a “mother” wavelet function y(z) by
dilation and translation operations, which are governed
by the scale factor a and shift factor b, respectively.

The CWT and its reconstruction version of a signal
f(t) € L*(R) are defined as,

Wia.b)=lal"" [ (W' [(1-b)ial di=(f(1).¥,.,(0)
(B2)

f=Ci | [ [Wia.b)¥..(1)/a’\dadb (B3)

Where, y'[(t—b)/a] is the complex conjugate of
i(i-b)al; Co=[ IFu()/|eldo, Fu(w) is the
Fourier transform of W(z).

To avoid the fair amounts of calculation in CWT, a
discrete version of CWT, a so-called dyadic DWT, is
usually adopted in engineering practice. Let a=27, b=27
(., k€ Z), the Equations (B2) and (B3) may be rewritten
in a dyadic discrete form,

Wia, b)y=W,(27, 27k)=2’ J“ : v(2t-k)f(t)dt  (B4)

f(=2 2 WA27, 2 yp(21 - k) (BS)

Based on WT, A further conception of the scalogram is
defined as the square of the decomposition coefficients of
wavelet transform, i.e.,

SCAL(a, b)=|Wxa, b)|* (B6)

The relationship between the scaling factor and
frequency can be described as,

F,=F./(a A (B7)

Here F, is the pseudo-frequency corresponding to the
scaling factor a; F, is the center frequency of a wavelet;
At is the sampling period.
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