• Title/Summary/Keyword: the thermal treatment time

Search Result 530, Processing Time 0.033 seconds

Study on AlAs-doped ZnO Thin Film Properties (AlAs로 도핑된 ZnO 박막 특성에 대한 연구)

  • Nam, Hyoung-Gin;Cha, Kyung-Hwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1057-1061
    • /
    • 2007
  • In this study, we investigated the properties of ZnO thin films prepared by layer-by-layer method in RF magnetron sputtering system using AlAs and ZnO targets. Effects of $H_2O_2$ dip prior to thermal treatment were studied as well. Either n-type or p-type films were observed in our study depending on the annealing conditions. It thus indicates the feasibility of arbitrarily modifying the conductivity type. At the same time, it also implies the thermal instabilities of the film properties. Property measurements after stressing the films up to 144 hours showed that thermal variations of properties nay be suppressed by pre-treatment in 30% $H_2O_2$ for 1 min.

  • PDF

Photoelectrochemical property of thermal copper oxide thin films (열성장을 통해 형성된 산화구리의 광전기화학적 특성)

  • Choi, Yongseon;Yoo, JeongEun;Lee, Kiyoung
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.4
    • /
    • pp.215-221
    • /
    • 2022
  • In the present work, copper oxide thin films were formed by heat-treatment method with different temperatures and atmosphere, e.g., at 200 ~ 400 ℃; in air and Ar atmosphere. The morphological, electrical and optical properties of the thermally fabricated Cu oxide films were analyzed by SEM, XRD, and UV-VIS spectrometer. Thereafter, photoelectrochemical properties of the thermal copper oxide films were analyzed under solar light (AM 1.5, 100 mW/cm2). Conclusively, the highest photocurrent was obtained with Cu2O formed under the optimum annealing condition at 300 ℃ in air atmosphere. In addition, EIS results of Cu oxide formed in air atmosphere showed relatively low resistance and long electron life-time compared with Cu Oxide fabricated in Ar atmosphere at the same temperature. This is because heat-treatment in Ar atmosphere could not form Cu2O due to lack of oxygen, and thermally formed CuO at high temperature suppressed stability and conductivity of the Cu oxide.

Effects of Various Pretreatment Methods on Physicochemical and Nutritional Properties of Carrot (다양한 전처리 방법에 따른 당근의 이화학 및 영양학적 특성 분석)

  • Kim, Kwang-Il;Hwang, In-Guk;Yoo, Seon-Mi;Min, Sang-Gi;Choi, Mi-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1881-1888
    • /
    • 2014
  • Pre-thermal treatment is important to minimize quality changes during main cooking or storage. In this study, to optimize pre-thermal treatment of carrots, three types of pre-thermal treatments were applied to carrots and quality changes such as physicochemical, nutritional, or sensory properties were observed. Washed and sliced carrots were thermally treated by hot-water immersion ($100^{\circ}C$, 1~10 min), steaming ($100^{\circ}C$, 1~10 min), and stir-frying with oil (10~80 sec). Carrot tissue was maintained until 2 min hot-water immersion or steaming, and they were damaged by just 30 sec of stir-frying. Color and hardness were significantly affected by treatment time and temperature. Color was completely changed after 5 min and 7 min by hot-water and steam treatments, respectively. Hardness decreased to 44% compared with fresh carrot (4,500 g) after 1 min, 3 min, and 20 sec of hot-water, steam, and stir-frying, respectively. For nutritional changes, ascorbic acid, organic acid, and peroxide activity were reduced by all treatments compared with fresh carrot. Especially, succinic acid was dramatically reduced by hot-water treatment. Otherwise, free sugar contents were increased with greater treatment time in all samples. In this study, pre-thermal treatment of carrot was optimal at 2 min steaming treatment.

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Evaluation of Low-temperature Thermal Pre-treatment and Biogas Characteristics using Waste Activated Sludge (잉여슬러지를 이용한 저온 열적전처리 및 바이오 가스 특성 평가)

  • Choi, Jae-Hoon;Jeong, Seong-Yeob;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.299-307
    • /
    • 2019
  • The purpose of this study was to investigate the effect of low temperature thermal pre-treatment on biodegradation of waste activated sludge for anaerobic digestion as a countermeasure for increasing sludge generation. The experimental condition was accomplished in 2 %, 4 %, and 6 % TS concentration, and $70^{\circ}C$, $80^{\circ}C$, $90^{\circ}C$ of temperature for a maximum of 120 minutes retention time. Then, it was followed by analysis of physical/chemical properties, BMP test and composition of biogas. The biogas characteristic was evaluated by applying the modified Gomperz model. As a result, solubility of dissolved substrate, such as $SCOD_{Cr}$, soluble carbohydrate, and soluble protein, and biogas production increased as temperature increased. Solubilization efficiency at $90^{\circ}C$ was 18.4 %, 17.03 % and 16.88% in 2 %, 4 %, and 6 % TS concentration respectively. Also, solubilization rates of carbohydrate and protein similarly increased. BMP test results also showed that methane production in excess sludge increased to 0.194, 0.187 and $0.182m^3/kg$ VS. respectively, and lag phase decreased to 0.145, 0.220, 0.351 day due to acceleration of the hydrolysis step. Consequently, low-temperature thermal pre-treatment could increase biodegradability of sludge, positively affecting biogas production and sludge reduction.

Alkali Hydrolysis of Insoluble Sericin (불용성 세리신의 알칼리 가수분해)

  • 김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • When insoluble sericin was hydrolyzed by treatment of NaOH solution, the solubility was increased with higher treatment temperature and longer treatment time. Whereas it was decreased in addition of NaHSO$_3$. As the results of electrophoresis in sericin powder obtained by the NaOH treatment, a distinguishable band was not confirmed. Average degree of polymerizations(A.D.P.) of sericin hydrolyzed by NaOH solutions were about 19.6∼22.1 and average molecular weight(M.W.) were about 2,200∼2,500. The longer hydrolysis time increased the whiteness of sericin powder. As the results of amino acid analysis, the contents of Thr., Tyr., and Ser. were decreased in NaOH hydrolysis as compared to HCl hydrolysis. In DSC analysis, thermal deformation and pyrolysis peak located at near 230$\^{C}$ and 320$\^{C}$, respectively.

  • PDF

Temperature Changes in Dentin upon Pulsed Nd:YAG Lasing Distance (Pulsed Nd:YAG 레이저 조사거리에 따른 상아질의 온도변화)

  • Jae-Hyung Kim;Woo-Cheon Kee
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.2
    • /
    • pp.327-334
    • /
    • 1995
  • In order to observe the influence of pulsed Nd:YAG laser at its out-of-contact with dentin on tooth temperature, we have applied pulsed Nd:YAG laser to 2mm thick dentin sample at a point of contact and from a distance of 1mm, 2mm, 3mm and 4mm with an energy of 0.3W, 0.5W, 0.8W, 1.5W and 2.0W. They were exposed to periods of 3 seconds, 6 seconds, 9 seconds and 15 seconds respectively and measured temperature changes. The results as follows : 1. When the time ad intensity of power were constant, the temperature changes on dentin of tooth depended on the distance. The temperature increased when the laser intensity increased bu two other conditions were contact. 2. At the point of contact, the temperature has risen over $5^{\circ}C$ regrdless of intensity of the power or the time. However, there was $5^{\circ}C$ fluctuation with 0.3 W for 3 seconds treatment. 3. The temperature change was less than $5^{\circ}C$ thermal change at the distance of 1mm and 2mm respectively when lased for 3 seconds, 6 seconds, 12 seconds and 15 seconds with 0.3 W. Similar results were observed at 3 and 6 seconds treatment with 0.5 W and at 3 seconds treatment with 0.8 and 1.0W respectively. 4. It showed less than 5(C thermal change when lased for 3 seconds, 6 seconds, 9 seconds, 12 seconds and 15 seconds with 0.3W at the distance of 3mm and 4mm. The same results were seen in 3 seconds, 6 seconds and 9 seconds treatment with 0.5W and in 3 seconds with 0.8W and 1.0W respectively. As we have seen the above, the results has indicated that pulsed Nd:YAG lasing at its off contact on dentin of 2mm thickness will not cause irreversible changes if lasing intensity, lasing distance and lasing time are appropriate.

  • PDF

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.

Abnormal behaviors in electrical conductions of SOI substrate by thermal annealing temperature (열처리에 따른 SOI 기판에서의 전기전도특성의 이상 거동)

  • Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.126-127
    • /
    • 2008
  • The effects annealing conditions on the electrical conductions of SOI substrate were studied. The reversible change of resistance and carrier concentration in accordance with the annealing temperature were observed for the first time in SOI substrate. The thermal donors due to interstitial oxygen atoms contribute the change of resistance and carrier concentration. Final1y, we show that the furnace annelaing at $500^{\circ}C$ at final heat treatment stage is effective for eliminate the thermal donor effects in SOI substrate.

  • PDF

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF