• 제목/요약/키워드: the sum of primes

검색결과 7건 처리시간 0.023초

ON THE PRIMES WITH $P_{n+1}-P_n = 8$ AND THE SUM OF THEIR RECIPROCALS

  • Lee Heon-Soo;Park Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.441-452
    • /
    • 2006
  • We introduce the counting function ${\pi}^*_{2.8}(x)$ of the primes with difference 8 between consecutive primes ($p_n,\;p_{n+l}=p_n+8$) can be approximated by logarithm integral $Li^*_{2.8}$. We calculate the values of ${\pi}^*_{2.8}(x)$ and the sum $C_{2,8}(x)$ of reciprocals of primes with difference 8 between consecutive primes $p_n,\;p_{n+l}=p_n+8$ where x is counted up to $7{\times}10^{10}$. From the results of these calculations. we obtain ${\pi}^*_{2.8}(7{\times}10^{10}$)= 133295081 and $C_{2.8}(7{\times}10^{10}) = 0.3374{\pm}2.6{\times}10^{-4}$.

ON THE SEVERAL DIFFERENCES BETWEEN PRIMES

  • Park, Yeonyong;Lee, Heonsoo
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.37-51
    • /
    • 2003
  • Enumeration of the primes with difference 4 between consecutive primes, is counted up to 5${\times}$10$\^$10/, yielding the counting function ,r2,4(5${\times}$10$\^$10/) = l18905303. The sum of reciprocals of primes with gap 4 between consecutive primes is computed B$_4$(5 ${\times}$ 10$\^$10/) = 1.1970s4473029 and B$_4$ = 1.197054 ${\pm}$ 7 ${\times}$ 10$\^$-6/. And Enumeration of the primes with difference 6 between consecutive primes, is counted up to 5${\times}$10$\^$10/, yielding the counting function $\pi$$\_$2.6/(5${\times}$10$\^$10/) = 215868063. The sum of reciprocals of primes with gap 6 between consecutive primes is computed B$\_$6/(5${\times}$10$\^$10/) = 0.93087506039231 and B$\_$6/ = 1.135835 ${\pm}$ 1.2${\times}$10$\^$-6/.

연속하는 두 소수의 차가 10인 소수 쌍에 대한 근사 함수에 대한 연구 (A study on the approximation function for pairs of primes with difference 10 between consecutive primes)

  • 이헌수
    • 사물인터넷융복합논문지
    • /
    • 제6권4호
    • /
    • pp.49-57
    • /
    • 2020
  • 본 논문은 연속하는 두 소수의 차가 10인 소수의 쌍의 수에 대한 계산 함수 π*2,10(x)의 근사함수 Li*2,10(x)를 로그적분을 이용하여 유도하였다. Li*2,10(x)가 π*2,10(x)의 근사함수로 적절한지 알아보기 위하여 컴퓨터와 Mathematica 프로그램을 이용하여 π*2,10(x)와 Li*2,10(x)의 값을 x ≤ 1011까지 구한 후 두 값의 오차율을 계산하였다. 오차율을 계산한 결과 대부분의 구간에서 오차율이 0.005% 이하로 나타났다. 또한, 두 소수의 차가 10인 소수들의 역수들의 합 C2,10(∞)이 유한임을 보였다. C2,10(∞)의 수렴값을 구하기 위하여 C2,10(1011)을 구한 후, 이를 이용하여 C2,10(∞)의 대략적인 수렴값을 계산하였다. 그 결과 C2,10(∞)=0.4176±2.1×10-3로 수렴함을 알 수 있었다.

소수계량함수 (The Prime Counting Function)

  • 이상운;최명복
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권10호
    • /
    • pp.101-109
    • /
    • 2011
  • 리만의 제타함수 $\zeta(s)$는 주어진 수 x보다 작은 소수의 개수 $\pi$(x)를 구하는 해답으로 알려져 있으며, 소수정리에서 지금까지 리만의 제타 함수 이외에 $\frac{x}{lnx}$,Li(x)와 R(x)의 근사치 함수가 제안되었다. 여기서 $\pi$(x)와의 오차는 R(x) < Li(x) < $\frac{x}{lnx}$이다. 로그적분함수 Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$, ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$ 이다. 본 논문은 $\pi$(x)는 유한급수��Li(x)로 표현됨을 보이며, 일반화된 $\sqrt{ax}{\pm}{\beta}$의 소수계량함수를 제안한다. 첫 번째로, $\pi$(x)는 $0{\leq}t{\leq}2k$의 유한급수인 $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$$Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})\rfloor$, $k\geq2$ 함수로 표현됨을 보였다. $Li_3$(x)는 $\pi(x){\simeq}Li_3(x)$가 되도록 ${\alpha}$ 값을 구하고 오차를 보정하는 ${\beta}$ 값을 갖도록 조정하였다. 이 결과 $x=10^k$에 대해 $Li_3(x)=Li_4(x)=\pi(x)$를 얻었다. 일반화된 함수로 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$를 제안하였다. 제안된 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ 함수는 리만의 제타함수에 비해 소수를 월등히 계량할 수 있었다.