• Title/Summary/Keyword: the static world

Search Result 193, Processing Time 0.029 seconds

Aristotle's Static World and Traditional Education (아리스토텔레스의 정적인 세계와 전통적인 교육)

  • Oh, Jun-Young;Son, Yeon-A
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.158-170
    • /
    • 2022
  • The purpose of this study is to understand the characteristics of Aristotle's view of nature that is, the static view of the universe, and find implications for education. Plato sought to interpret the natural world using a rational approach rather than an incomplete observation, in terms of from the perspective of geometry and mathematical regularity, as the best way to understand the world. On the other hand, Aristotle believed that we could understand the world by observing what we see. This world is a static worldview full of the purpose of the individual with a sense of purposive legitimacy. In addition, the natural motion of earthly objects and celestial bodies, which are natural movements towards the world of order, are the original actions. Aristotle thought that, given the opportunity, all natural things would carry out some movement, that is, their natural movement. Above all, the world that Plato and Aristotle built is a static universe. It is possible to fully grasp the world by approaching the objective nature that exists independently of human being with human reason and observation. After all, for Aristotle, like Plato, their belief that the natural world was subject to regular and orderly laws of nature, despite the complexity of what seemed to be an embarrassingly continual change, became the basis of Western thought. Since the universe, the metaphysical perspective of ancient Greece and modern philosophy, relies on the development of a dichotomy of understanding (cutting branches) into what has already been completed or planned, ideal and inevitable, so it is the basis of traditional teaching-learning that does not value learner's opinions.

A GQM Approach to Evaluation of the Quality of SmartThings Applications Using Static Analysis

  • Chang, Byeong-Mo;Son, Janine Cassandra;Choi, Kwanghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2354-2376
    • /
    • 2020
  • SmartThings is one of the most popular open platforms for home automation IoT solutions that allows users to create their own applications called SmartApps for personal use or for public distribution. The nature of openness demands high standards on the quality of SmartApps, but there have been few studies that have evaluated this thoroughly yet. As part of software quality practice, code reviews are responsible for detecting violations of coding standards and ensuring that best practices are followed. The purpose of this research is to propose systematically designed quality metrics under the well-known Goal/Question/Metric methodology and to evaluate the quality of SmartApps through automatic code reviews using a static analysis. We first organize our static analysis rules by following the GQM methodology, and then we apply the rules to real-world SmartApps to analyze and evaluate them. A study of 105 officially published and 74 community-created real-world SmartApps found a high ratio of violations in both types of SmartApps, and of all violations, security violations were most common. Our static analysis tool can effectively inspect reliability, maintainability, and security violations. The results of the automatic code review indicate the common violations among SmartApps.

Structural Optimization under Equivalent Static Loads Transformed from Dynamic Loads Based on Displacement (변위에 기초한 동하중에서 변환된 등가정하중하에서의 구조최적설계)

  • Gang, Byeong-Su;Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1949-1957
    • /
    • 2000
  • All the loads in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in analysis and design, static loads are utilized with dynamic factors. The dyna mic factors are generally determined based on experiences. Therefore, the static loads can cause problems in precise analysis and design. An analytical method based on modal analysis has been proposed for the transformation of dynamic loads into equivalent static load sets. Equivalent static load sets are calculated to generate an identical displacement field in a structure with that from dynamic loads at a certain time. The process is derived and evaluated mathematically. The method is verified through numerical tests. Various characteristics are identified to match the dynamic and the static behaviors. For example, the opposite direction of a dynamic load should be considered due to the vibration response. A dynamic bad is transformed to multiple equivalent static loads according to the number of the critical times. The places of the equivalent static load can be different from those of the dynamic load. An optimization method is defined to use the equivalent static loads. The developed optimization process has the same effect as the dynamic optimization which uses the dynamic loads directly. Standard examples are solved and the results are discussed

An Investigation of Dynamic Characteristics of Structures in Optimization (동하중을 고려한 설계의 필요성에 관한 고찰)

  • Kang, B.S.;Kim, J.S.;Park, G.J
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1011-1016
    • /
    • 2004
  • All the loads in the real world are dynamic loads and it is well known that structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to the static loads using dynamic factors. However, due to the difference of load characters, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also the optimization results considering dynamic loads are compared with static loads.

  • PDF

A Study of 3D World Reconstruction and Dynamic Object Detection using Stereo Images (스테레오 영상을 활용한 3차원 지도 복원과 동적 물체 검출에 관한 연구)

  • Seo, Bo-Gil;Yoon, Young Ho;Kim, Kyu Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.326-331
    • /
    • 2019
  • In the real world, there are both dynamic objects and static objects, but an autonomous vehicle or mobile robot cannot distinguish between them, even though a human can distinguish them easily. It is important to distinguish static objects from dynamic objects clearly to perform autonomous driving successfully and stably for an autonomous vehicle or mobile robot. To do this, various sensor systems can be used, like cameras and LiDAR. Stereo camera images are used often for autonomous driving. The stereo camera images can be used in object recognition areas like object segmentation, classification, and tracking, as well as navigation areas like 3D world reconstruction. This study suggests a method to distinguish static/dynamic objects using stereo vision for an online autonomous vehicle and mobile robot. The method was applied to a 3D world map reconstructed from stereo vision for navigation and had 99.81% accuracy.

A Critical Review on C. Norberg Schulz's Theory of the 'Placeness' - Centering around Heidegger's Thought of "Openness" - (노베르그-슐츠(C. Norberg-Schulz)의 '장소성' 이론에 대한 비판적 고찰 - 하이데거(Martin Heidegger)의 "개방성(Openness)"과 "틈새내기(Rift-design)" 사유를 근거로 -)

  • Lee, Seung-Heon;Lee, Dong-Eon
    • Journal of architectural history
    • /
    • v.12 no.3
    • /
    • pp.149-162
    • /
    • 2003
  • Schulz accepted the existentialist view based on Heidegger's thought and at the same time the objectivist view making fixed this living world, evoking controversies for discussion. He could not see various presentations of the meaning of place because he perceived elements of this world individually. Thus Schulz's mixed system of understanding is sternly different from Heidegger's thought. First, Heidegger suggests that place as existential space represents the occasion revelation of incidents in Dasein. While Schulz recognizes that place is a systematic space predetermined for Dasein. Second, Heidegger interprets the placeness as creative openness in which elements comprising this world face and interact with each other into one. In contrast, Schulz defines each of the elements through signification and regards it as invariable and static. Third, Heidegger perceives that the placeness is expressed with sustainable, complex images through "rift-design" which seeks dynamic interactions between the ground and the world. While Schulz attempts to take "Genius Loci" or "habituated scene" through "gathering" as a concept he regards static and then visualize such structural two factors, producing certain internal images of place. However, limits of Schulz's theory prevent us from exerting complete imagination and discovering the inner creative world of the object. Thus the ultimate goal of paying attention to the placeness, that is, the recovery of individual identity, fails due to the prevalence and abstraction of objectified thinking. In contrast, Heidegger's thought about "openness" is a useful means of realizing the placeness. Openness may be referred to a dynamic coordination in which the earth and the world sustain each other under incessant mutual tensions, but not sticking o each other. "Rift-design" is an openness strategy to cause tense relations by preventing structuralization intentively. This is a creative design that allows seeing original seams of the object.

  • PDF