• Title/Summary/Keyword: the source materials

Search Result 3,052, Processing Time 0.03 seconds

A Study on the Stabilization Scheme of Optical Source for Precision Measurement (정밀측정을 위한 안정된 광원에 관한 연구)

  • 김지대;서호성;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.265-271
    • /
    • 2003
  • This study is for the stable optical source in order to get the precision measurement, which contributes to help the laser frequency and the output to be settled. The laser optical frequency is changed by the length of resonance cavity. The length variation of the laser resonance amplitude is affected by the thermal expansion of that system. So, we try not only to adjust the temperature of the laser tube using the heater for fine length of resonance cavity, but also to maintain the fixed temperature of the resonance cavity for outputting the safe laser optical frequency. Therefore, we must take materials with the thermal expansion of the supporting system, which is closer to it of the laser resonance cavity. Using the materials, we can promote to stabilize the temperature of it. In advance, we also plan to get the settlement of the laser frequency and the output in the long km, optimizing and stabilizing the system.

  • PDF

A Large Area Plasma Source Using Multi-cathode Electron Beam (다중 음극 전자빔을 이용한 대면적 플라즈마 소스)

  • Gang, Yang-Beom;Jeon, Hyeong-Tak;Kim, Tae-Yeong;Jeong, Gi-Hyeong;Go, Dong-Gyun;Jeong, Jae-Guk;No, Seung-Jeong
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.861-864
    • /
    • 1999
  • A new plasma source using the multi-cathode electron beam has been designed and manufactured. A multi-cathode was adopted to produce bulk plasmas in a large volume. Multi-cathode electron beam plasma source(MCEBPS) was found to generate stable plasmas over the wafer diameter of 300 mm or above. W(tungsten) filament was used as a cathode. Over a 320 mm diameter, both the plasma potential $V_p$ and floating potential $V_f$ were uniformly maintained and the difference between $V_p and V_f$ was measured to be small. The plasma density was around $10^{10} cm^{-3}$ and its variation along the radial distance was small.

  • PDF

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 히트펌프 시스템의 열성능 해석)

  • Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

A Study on the Development and Application of Thermal Evaporation Source (Thermal Evaporation 증발원 개발 및 응용에 관한 연구)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.19-22
    • /
    • 2020
  • The thermal evaporation source is used to prepare thin films by physical vapor deposition. Materials of metals, organic materials, were tested and explained for thermal evaporation experiments. The developed effusion cell performance depends on the type of deposition material, the size of the crucible, the performance of the reflector, etc. and the proper conditions were found by producing, comparing and analyzing several sets of effusion cell to quantitatively evaluate the performance of the cell. The effusion cell for thermal evaporation source is used to prepare thin films of Ag, Cu, Mg.

Conceptual Source Design and Dosimetric Feasibility Study for Intravascular Treatment: A Proposal for Intensity Modulated Brachytherapy (혈관내 방사선치료를 위한 이론적 선원 설계 및 선량적 관점에서의 적합성 연구: 출력변조를 이용한 근접치료에 대한 제안)

  • Kim Siyong;Han Eunyoung;Palta Jatinder R.;Ha Sung W.
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.158-166
    • /
    • 2003
  • Purpose: To propose a conceptual design of a novel source for intensity modulated brachytherapy. Materials and Methods: The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a $^{90}Sr/Y$ Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quater of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. Results: The preliminary hypothetical simulation and optimization results demonstrated the 87$\%$ difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7$\%$ by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. Conclusion: The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

Dry Etching of GaAs in a Planar Inductively Coupled BCl3 Plasma (BCl3 평판형 유도결합 플라즈마를 이용한 GaAs 건식식각)

  • Lim, Wan-tea;Baek, In-kyoo;Jung, Pil-gu;Lee, Je-won;Cho, Guan-Sik;Lee, Joo-In;Cho, Kuk-San;Pearton, S.J.
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.266-270
    • /
    • 2003
  • We studied BCl$_3$ dry etching of GaAs in a planar inductively coupled plasma system. The investigated process parameters were planar ICP source power, chamber pressure, RIE chuck power and gas flow rate. The ICP source power was varied from 0 to 500 W. Chamber pressure, RIE chuck power and gas flow rate were controlled from 5 to 15 mTorr, 0 to 150 W and 10 to 40 sccm, respectively. We found that a process condition at 20 sccm $BCl_3$ 300 W ICP, 100 W RIE and 7.5 mTorr chamber pressure gave an excellent etch result. The etched GaAs feature depicted extremely smooth surface (RMS roughness < 1 nm), vertical sidewall, relatively fast etch rate (> $3000\AA$/min) and good selectivity to a photoresist (> 3 : 1). XPS study indicated a very clean surface of the material after dry etching of GaAs. We also noticed that our planar ICP source was successfully ignited both with and without RIE chuck power, which was generally not the case with a typical cylindrical ICP source, where assistance of RIE chuck power was required for turning on a plasma and maintaining it. It demonstrated that the planar ICP source could be a very versatile tool for advanced dry etching of damage-sensitive compound semiconductors.

Environmental Pollutants Drained From Highway Pavement Road

  • Takemura, Shinsaku;Goto, Naoshige;Mitamura, Osamu
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.58-61
    • /
    • 2005
  • Environmental polluting materials from road surface drainage are a significant nonpoint source influenced to the eutrophication of lake and ecosystems with a transport development in recent years. To elucidate the discharge characteristics, the changing patterns in concentrations of polluting materials such as suspended solid (SS), chemical oxygen demand (COD), nitrogenous and phosphorus nutrients in drainage waters, were investigated during rainfall. Load variation of COD concentration in drainage water samples was closely related to that of SS concentration. This indicates that SS contained a greater part of organic matter. A quite difference between the past pavement and the new well-drainage pavement system was observed in the concentrations of SS and COD in drainage waters. Appreciable concentrations of nitrite and nitrate were determined in drainage waters. The present results indicate that the drainage water from road surfaces is a significant nonpoint source, and that the well-drainage pavement system introduced to skid prevention has an effect on the decreases of pollutants.

Swift Synthesis of CVD-graphene Utilizing Conduction Heat Transfer

  • Kim, Sang-Min;Mag-isa, Alexander E.;Oh, Chung-Seog;Kim, Kwang-Seop;Kim, Jae-Hyun;Lee, Hak-Joo;Yoon, Jonghyuk;Lee, Eun-Kyu;Lee, Seung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.652-652
    • /
    • 2013
  • The conventional thermal chemical vapor deposition (CVD) setup for the graphene synthesis has mainly used convective heat transfer in order to heat a catalyst (e.g. Cu) up to $1,000^{\circ}C$. Although the conventional CVD has been so far widely accepted as the most appropriate candidate enabling mass-production of high-quality graphene, this method has stillremained under the standard for the commercialization largely due to the poor productivity arisen out of the required long processing time. Here, we introduced a fast and efficient synthetic route toward CVD-graphene. Unlike the conventional CVD using convection heat transfer, we adopted a CVD setup utilizing conduction heat transfer between Cu catalyst and rapid heating source. The high thermal conductive nature of Cu and the employed rapid heating source led to the remarkable reduction in processing timeas compared to the conventional convection based CVD (Fig. 1A), moreover, the synthesized graphene was turned out to have comparable quality to that synthesized by the conventional CVD (Fig. 1B). For the optimization of the conduction based CVD process, the parametric studies were thoroughly performed using through Raman spectroscopy and electrical sheet resistance measurement. Our approach is thought to be worth considerable in order to enhance productivity of the CVD graphene in the industry.

  • PDF