• Title/Summary/Keyword: the sliding mode

Search Result 1,572, Processing Time 0.035 seconds

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

Development of the Pneumatic Service Robot with a Hybrid Type (하이브리드형의 공압 서비스 로봇의 개발)

  • Choi, Cheol-U;Choi, Hyeun-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.686-691
    • /
    • 2001
  • In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

Robust Adaptive Control for Efficiency Optimization of Induction Motors (유도전동기의 효율 최적화를 위한 강인 적응제어)

  • Hwang, Young-Ho;Park, Ki-Kwang;Kim, Hong-Pil;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

The study of ABS control system using fuzzy controller for commercial vehicles (퍼지 제어기를 이용한 상용차 ABS 제어에 대한 연구)

  • 김동희;박종현;김용주;황돈하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.110-110
    • /
    • 2000
  • In this paper, an antilock brake system (ABS) for commercial vehicles is studied by considering the design of a fuzzy Logic controller with pulse width modulation (PWM). PWM method is used for generating solenoid valve inputs in order to cope with the chattering problem caused by the conventional on/off control The sliding mode observer is designed to estimate the vehicle longitudinal velocity and it is used to calculate the wheel slip ratio. The effectiveness of the proposed control algorithm was validated by simulations performed with a nonlinear 14-DOF vehicle model including the dynamics of the brakes.

  • PDF

Motion Control of Inch-worm (이송자벌레의 운동제어)

  • Yun, Jae-Heon;Kim, Yeong-Sik;Kim, In-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.179-185
    • /
    • 2002
  • Solid state deformation of PZT is effective for the micron scale displacement. Inch-worm gets large linear displacement by incrementally summing displacements of PZT actuators. Dynamic stiffness of inch-worm is generally low compared to its driving condition due to the small size and light weight of inch-worm. Mechanical vibration induced by low stiffness may degenerate the motion accuracy of the inch-worm. In this paper, dynamic characteristics of the inch-worm are modeled by using the frequency domain curve fitting based on the experimental frequency response function. SMC (sliding mode control) is examined for motion control of the inch-worm. Simulation and experimental results show that the inch-worm with SMC scheme is feasible for the precise displacement device.

A Semi-Active Suspension Using ER Fluids for a Commercial Vehicle Seat (ER 유체를 이용한 상용차 운전석의 반능동형 현가 장치)

  • 최정환;남무호;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.394-399
    • /
    • 1997
  • This paper presents a new concept of a semi-active suspension system for a commercial vehicle seat. The proposed suspension system features an ER(electro-rheological) damper which can produce continuously tunable damping forces by control electric fields. A dynamic model of the ER damper is first achieved by incorporating Bingham property of the ER fluid, followed by the formulation of governing equations of motion for the suspension system. A sliding mode controller is then designed on the basis of the hyper-plane sliding mode scheme. The effectiveness of the proposed control system is evaluated by investigating control performance for vibration isolation.

  • PDF

Performance Analysis of a Sliding Mode Control for Distributed Generations

  • Islam, Gazi;Al-Durra, Ahmed;Muyeen, S.M.;Caruna, Cedric;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • This paper presents the performance analysis of a sliding mode based hybrid controller for three phase voltage source inverter. The main objective of this analysis is to observe the effectiveness of the controller for fault ride through (FRT) capability improvement of the distributed generations (DG). The performance of the conventional PI based cascaded controller is also presented for comparison purpose.

A Speed Control of A Series DC Motor Using Adaptive Fuzzy Sliding-Mode Method (적응 퍼지 슬라이딩 모드 기법을 이용한 Series DC 모터의 속도제어)

  • Kim, Do-Woo;Yang, Hai-Won;Jung, Gi-Chul;Lee, Hyo-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2292-2295
    • /
    • 2001
  • In this paper, The control problem for a series DC motor is considered to adaptive fuzzy sliding-mode control scheme. Based on a nonlinear mathematical model of a series connected DC motor, instead of the combination of a nonlinear transformation and state feedback(feedback linearization) reduces the nonlinear control design. To demonstrate its effectiveness, an experimental study of this controller is presented. Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of SMC, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce computing time considerably.

  • PDF

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF